• Title/Summary/Keyword: Human fetus

Search Result 104, Processing Time 0.029 seconds

Repetition of Apoptosis Induced by Amiloride Derivatives in Human Umbilical Vein Endothelial Cells (제대정맥 내피세포에서 Amiloride 유도체에 의한 Apoptosis 반복)

  • Park, Kyu Chang;Park, Kyu Sang;Moon, Soo Jee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.56-66
    • /
    • 2003
  • Purpose : Human umbilical vein endothelial cells(HUVECs) play an important role in regulating blood flow by releasing vasoactive substances. It has been reported that endothelial impairment and dysfunction might be a primary cause of placental vascular disease, which is manifested clinically as preeclampsia in mother and intrauterine growth restriction in fetus. Furthermore, the frequency of apoptotic changes is increased in umbilical and placental tissues from growth-restricted pregnancies. However, the various mechanisms of umbilical endothelial cell apoptosis have not been broadly proposed. We investigate the effects of amiloride derivatives on apoptotic death of HUVECs and identify their ionic mechanism. Methods : HUVECs were purchased from Clonetics, and cultured on endothelial cell growth medium. MTT assay and flow cytometry were used for assessing cytotoxic effect and confirming the apoptosis. Changes in intracellular ion concentrations were measured with specific fluorescent dyes and fluorescence imaging analysis system. Results : Amiloride derivatives elicited cytotoxic effects on HUVECs with dose-dependent manners and the rank order of potency is HMA($IC_{50}\;11.2{\mu}M$), MIA>EIPA>>amiloride. HMA-induced cytotoxicity is dependent on extra- and intracellular pH, that is, increase extra- and intracellular pH augmented the cytotoxic effects of HMA. HMA dose-dependently reduced intracellular major ions, such as $K^+$ and $Cl^-$. Interestingly, the depletion of intracellular ions induced by HMA was also significantly enhanced at alkaline extracellular pH. Conclusion : Amiloride derivatives induce apoptosis of HUVECs with dose and pH dependent manners. They reduce intracellular $K^+$ and $Cl^-$ concentration, which is also extracellular pH dependent.

A Review on Constitutional Discordance Adjudication of the Constitutional Court to Total Ban on Abortion ('낙태죄' 헌법재판소 헌법불합치 결정의 취지와 법률개정 방향 - 헌법재판소 2019. 4. 11. 선고 2017헌바127 전원재판부 결정에 따라 -)

  • Lee, Seok-Bae
    • The Korean Society of Law and Medicine
    • /
    • v.20 no.2
    • /
    • pp.3-39
    • /
    • 2019
  • Even after the Constitutional Court decided on August 23, 2012 that the provisions of abortion were constitutional, discussions on the abolition of abortion continued. The controversy about abortion is not only happening recently, but it has already existed since the time when the Penal Code was enacted, and it shares the history of modern legislation with the Republic of Korea. Legislators whom submitted amendment while insisting upon the eradication of abortion in the process of enacting criminal law at that time, presented social and economic adaptation reasons as the core reason. From then on, the abolition of abortion has been discussed during the development dictatorship, but this was not intended to guarantee women's human rights, but it was closely connected to the national policy projects of "Contraception" and "Family Planning" of the Park's dictatorship. Since then, the enactment of the Mother and Child Health Law, which restrictively allow artificial abortion, was held on February 8, 1973, in an emergency cabinet meeting that replaced the legislative power after the National Assembly was disbanded. It became effected May 10th. The reason behind the Mother and Child Health Law that included legalization of abortion in part was that the Revitalizing Reform at that time did not allow any opinion, so it seem to be it was difficult for the religious to express opposition. The "Maternal and Child Health Law" enacted in this way has been maintained through several amendments. It can be seen that the question of maintenance of abortion has been running on parallel lines without any significant difference from the time when the Penal Code was enacted. On August 23, 2012, the Constitutional Court decided that the Constitutional Opinion and the unonstitutional Opinion were 4: 4. However, it was decided by the Constitution without satisfying the quorum for unconstitutional decision of the Constitutional Court. This argument about abolition of abortion is settled for the the time being with the decision of the constitutional inconsistency of the Constitutional Court, and now, the National Assembly bears the issue of new legislation. In other words, the improved legislation must be executed until December 31, 2020, and if the previous improved legislation is not implemented, the crime of abortion (Article 269, Paragraph 1, Article 270 of the Criminal Code) Article 1 (1) will cease to be effective from 1 January 2021. Therefore, in the following, we will look into the reason of the Constitutional Court's constitutional discordance adjudication on criminal abortion(II), and how it structurally differs from the previous Constitutional Court and the Supreme Court. After considering key issues arised from the constitutional discordance adjudication(III), the legislative direction and within the scope of legislative discretion in accordance with the criteria presented by the Constitutional Court We reviewed the proposed revisions to the Penal Code and the Mather and Child Health Act of Korea(IV).

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

A COMPARATIVE STUDY OF PRESERVING ABILITY OF HUMAN PERIODONTAL LIGAMENT CELLS STORED IN DIFFERENT TEMPERATURED STORAGE MEDI (저장용액의 온도에 따른 치주인대세포의 생존율)

  • Jo, Jae-Hyun;Kim, Seong-Oh;Choi, Hyung-Jun;Lee, Jae-Ho;Son, Heung-Kyu;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • To compare the survival rate of periodontal ligament cells preserved in storage media with good availability at the time of an avulsion injury, periodontal ligament cells were incubated in ${\alpha}-MEM$ culture medium containing 10% FBS in condition of $37^{\circ}C$, 5% $CO_2$. These cells were then cultured in HBSS, ${\alpha}-MEM$, milk(S co., P. co.) and tap water at the temperature of 4, 25, $37^{\circ}C$ each in 60 min. The groups were measured by MTT assay. The results were as follows : 1. Among the storage media at $4^{\circ}C$, ${\alpha}-MEM$ and P-milk had the highest preserving ability of periodontal ligament cells, while that of HBSS S-milk and tap was low in order. 2. Among the storage media at $25^{\circ}C$, ${\alpha}-MEM$ had the highest preserving ability of periodontal ligament cells, while that of P-milk, HBSS, S-milk, tap water was low in order. 3. Among the storage media at $37^{\circ}C$, the preserving ability of periodontal ligament cells was very high in ${\alpha}-MEM$, P-milk, HBSS and S-milk, it's lowest in tap water. 4. The preserving ability of periodontal ligament cells in ${\alpha}-MEM$ was high at $4^{\circ}C$ and it's low in order of $25^{\circ}C$, $37^{\circ}C$, but in HBSS was high at $4^{\circ}C$ and it's low at $25^{\circ}C$, $37^{\circ}C$ 5. The preserving ability of periodontal ligament cells in S-milk and P-milk was high at $4^{\circ}C$, $25^{\circ}C$ and it s low at $37^{\circ}C$. In conclusion, HBSS is the storage medium of choice in an avulsion, but in this study it is preferable to choose milk at $4^{\circ}C$ for tooth since it is easy to get and affect cell viability.

  • PDF