본 논문은 신경망 (neural network: NN)과 mean-shift알고리즘을 이용하여 복잡한 배경에서 사용자의 눈을 정확히 추출하고 추적할 수 있는 눈 추적 시스템을 제안한다. 머리의 움직임에 강건한 시스템을 개발하기 위해서 먼저 피부색 모델과 연결 성분분석을 이용하여 얼굴영역을 추출한다. 그 다음 신경망기반의 텍스처 분류기를 이용하여 얼굴 영역(face region)을 눈 영역(eye region)과 비눈 영역(non-eye region)으로 구분함으로써 눈을 찾는다. 이러한 눈 검출 방법은 안경의 착용 유무에 상관없이 사용자의 눈 영역을 정확히 검출 할 수 있게 한다. 일단 눈 영역이 찾아지면 이후 프레임에서의 눈 영역은 mean-shift알고리즘에 의해 정확하게 추적된다. 제안된 시스템의 효율성을 검증하기 위해서 제안된 시스템은 눈의 움직임을 이용한 인터페이스 시스템에 적용되었고, 이 인터페이스를 이용한 'aliens game'이 구현되었다. 25명의 사용자에 대해 실험한 결과는 제안된 시스템이 보다 편리하고 친숙한 인터페이스로 활용될 수 있다는 것을 보여주었으며, 또한 $320{\times}240$ 크기의 영상을 초당 30프레임의 빠른 속도로 처리함으로써 실시간 시스템에 적용될 수 있음을 보여주었다.
사람의 눈을 통해 획득된 시각정보는 시각적 자극을 어떻게 보는지에 대한 많은 정보를 포함하고 있는데, 아이트래킹기술을 활용하면 소비자의 시각정보를 정량적 데이터로 획득하여 분석가능하다. 이러한 측정은 소비자가 무의식적으로 느끼게 되는 감성 측정이 가능하며, 시선추적을 통한 캐릭터의 탐색반응을 계량적으로 수치화하여 직접 수집할 수 있다. 본 연구에서는 캐릭터의 관심영역(AOI)을 추적하여, 시선고정 도출 측정값 중 시선고정평균시간, 횟수, 시선방문평균시간, 횟수, 마지막으로 처음 시선고정이 일어난 평균시간을 분석하였다. 분석결과, 전체적으로 시선고정과 시선방문이 주로 이루어진 지점은 캐릭터의 몸매보다는 얼굴에서 많은 인지적 처리과정이 일어났으며 시각적 주의가 높게 나타났다. 또한 매력요소의 시각적 주의를 통해 매력요소가 캐릭터에 대한 선호도를 결정하는 중요한 요인으로 제시되고 있음을 검증할 수 있었다. 향후 본 연구결과를 토대로 더 많은 캐릭터의 추가 연구가 수행되어 정량적 해석 방법이 제시된다면 캐릭터 개발의 기초자료로 그리고 캐릭터디자인 결정시 고려해야 할 요소로 활용될 수 있을 것이다.
Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.
서비스 로봇은 비전 카메라, 초음파 센서, 레이저 스캐너, 마이크로폰 등과 같은 다양한 센서를 장착하고 있다. 이들 센서들은 이들 각각의 고유한 기능을 가지고 있기도 하지만, 몇몇을 조합하여 사용함으로써 더욱 복잡한 기능을 수행할 수 있다. 음성영상 융합은 서로가 서로를 상호보완 해주는 대표적이면서도 강력한 조합이다. 사람의 경우에 있어서도, 일상생활에 있어 주로 시각과 청각 정보에 의존한다. 본 발표에서는, 음성영상 융합에 관한 두 가지 연구를 소개한다. 하나는 음원 방향 검지 성능의 향상에 관한 것이고, 나머지 하나는 음원 방향 검지와 얼굴 검출을 이용한 로봇 어텐션에 관한 것이다.
최근 인간의 자세와 행동을 추적하는 행동 분석 연구가 활발해지고 있다. 특히 2017년 CMU에서 개발한 오픈소스인 오픈포즈(OpenPose)는 사람의 외모와 행동을 추정하는 대표적인 방법이다. 오픈포즈는 사람의 키, 얼굴, 손 등의 신체부위를 실시간으로 감지하고 추정할 수 있어 스마트 헬스케어, 운 동 트레이닝, 보안시스템, 의료 등 다양한 분야에 적용될 수 있다. 본 논문에서는 헬스장에서 사용자들이 가장 많이 운동하는 Squat, Walk, Wave, Fall-down 4개 동작을 오픈포즈기반 딥러닝인 DNN과 CNN을 이용하여 운동 동작 분류 방법을 제안한다. 학습데이터는 녹화영상 및 실시간으로 카메라를 통해 사용자의 동작을 캡처해서 데이터 셋을 수집한다. 수집된 데이터 셋은 OpenPose을 이용하여 전처리과정을 진행하고, 전처리과정이 완료된 데이터 셋은 본 논문에서 제안한 DNN 및 CNN 모델 이용하여 운동 동작 분류를 학습한다. 제안한 모델에 대한 성능 오차는 MSE, RMSE, MAE를 사용한다. 성능 평가 결과, 제안한 DNN 모델 성능이 제안한 CNN 모델보다 우수한 것으로 나타났다.
최근에 인간컴퓨터 상호작용 분야에서 사용자의 시선 위치를 파악하여 더욱 편리한 입력 장치를 개발하고자 하는 연구가 많이 진행되고 있다. 기존의 대부분 연구들은 큰 모니터를 사용하는 컴퓨터 환경에서 시선 추적 시스템을 개발하였다. 최근 이동단말기의 사용 증대로 이동 중에 시선 추적에 의한 단말기 제어의 필요성이 증대되고 있다. 이에 본 연구에서는 이동형 컴퓨터 (Ultra-Mobile PC) 및 컴퓨터 내장 카메라를 이용하여 사용자의 얼굴을 추적하고, 얼굴내의 특징점의 위치를 능동외관모델 (Active Appearance Model)을 기반으로 추적하는 연구를 수행하였다. 본 논문의 독창성은 기존 연구와는 달리 소형 화면을 가지는 이동 단말기에서 사용자의 시선 위치를 추적할 수 있는 방법을 제안한 점과 정밀한 얼굴 특징점 검출을 위하여 능동외관모델을 사용한 점이다. 또한 사용자의 초기 캘리브레이션시 얻어진 특징값을 기반으로, 입력 특징값들을 정규화 함으로써, Z거리에 따라 시선 위치 정확도가 영향을 받지 않는다는 점이다. 실험결과, 약 1.77도의 시선 오차를 발생하였으나, 추가적인 얼굴 움직임에 의한 마우스 움직임 기능으로 이러한 시선 오차는 더욱 줄일 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.