• 제목/요약/키워드: Human error probability

검색결과 69건 처리시간 0.033초

Dependence assessment in human reliability analysis under uncertain and dynamic situations

  • Gao, Xianghao;Su, Xiaoyan;Qian, Hong;Pan, Xiaolei
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.948-958
    • /
    • 2022
  • Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.

석유화학 산업에서의 수행영향인자 및 근본원인 분석 결과 (Analysis of Performance Influencing Factor in Chemical Process Industry : A Practical Application)

  • 유광수;김은정;김용수
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.60-64
    • /
    • 2007
  • 한국에서는 석유화학 산업의 역사가 30년 이상이 되어 시설이 노후화되기 시작하여 잠재적인 사고의 위험 가능성이 높아지고 있다. 지금까지의 석유화학 산업에서의 전통적인 위험성 평가와 시스템의 제어는 기계적인 결함에만 중점을 두었기 때문에 인간의 행동을 제어하는 것은 간과하여 왔다. 자동화 기술과 제어기술의 발전도 필요하지만 인간의 의사 결정 요소가 석유화학산업에서 사고를 예방하는데 필수적이다. 거의 모든 심각한 사고는 인간 행동과 안전 장비의 기계적인 결함이 동시에 부적당할 때 발생한다. 진보적인 인간의 신뢰성 분석 소프트웨어는 실패 데이터를 수집하고, 한국의 화학 산업에서 인간의 오류 확률을 분석하기 위해 개발되었다. 이 논문에서는 Root cause Analysis를 통한 결과와 PIF(Performance Influencing Factor) 평가 결과를 보여준다.

  • PDF

Human Error Probability Determination in Blasting Process of Ore Mine Using a Hybrid of HEART and Best-Worst Methods

  • Aliabadi, Mostafa Mirzaei;Mohammadfam, Iraj;Soltanian, Ali Reza;Najafi, Kamran
    • Safety and Health at Work
    • /
    • 제13권3호
    • /
    • pp.326-335
    • /
    • 2022
  • Background: One of the important actions for enhancing human reliability in any industry is assessing human error probability (HEP). The HEART technique is a robust tool for calculating HEP in various industries. The traditional HEART has some weaknesses due to expert judgment. For these reasons, a hybrid model is presented in this study to integrate HEART with Best-Worst Method. Materials Method: In this study, the blasting process in an iron ore mine was investigated as a case study. The proposed HEART-BWM was used to increase the sensitivity of APOA calculation. Then the HEP was calculated using conventional HEART formula. A consistency ratio was calculated using BWM. Finally, for verification of the HEART-BWM, HEP calculation was done by traditional HEART and HEART-BWM. Results: In the view of determined HEPs, the results showed that the mean of HEP in the blasting of the iron ore process was 2.57E-01. Checking the full blast of all the holes after the blasting sub-task was the most dangerous task due to the highest HEP value, and it was found 9.646E-01. On the other side, obtaining a permit to receive and transport materials was the most reliable task, and the HEP was 8.54E-04. Conclusion: The results showed a good consistency for the proposed technique. Comparing the two techniques confirmed that the BWM makes the traditional HEART faster and more reliable by performing the basic comparisons.

Research Trends of International Guides for Human Error Prevention in Nuclear Power Plants

  • Lim, Hyeon-Kyo;Kim, Hyunjung;Jang, Tong-Il;Lee, Yong Hee
    • 대한인간공학회지
    • /
    • 제32권1호
    • /
    • pp.125-137
    • /
    • 2013
  • Objective: The aim of this study was to comprehend major concepts and flows that penetrate international guides or standards for developing a quantitative possibility measure of human errors that can be committed or omitted in nuclear power plants. Background: For a few past decades, lots of researchers have studied the effect of stress and/or fatigue which can result in human errors. Thus, this study was carried out on the assumption that much of them were summarized as an international guidelines or manuals, if any, for human error prevention. Method: A literal survey was conducted with materials and documentation published by international organizations related with safety and standardization, such as ISO, OSHA, NIOSH, NASA, and so on with special reference to human error prevention through management of work stress and fatigue as major Performance Shaping Factors. Results: International guides or management manuals on stress or fatigue management for human error prevention hardly were found, and most researches seemed to concentrate on one of them individually. Conclusion: There was few vestige of research that studied both concurrently. However, it was verified that not a few researches have been tried to develop quantitative measures to estimate probability or job characteristics for human error prevention and/or performance downgrading. Application: The results of this study would help to develop a causal model of human errors due to work stress and fatigue that can result in unexpected accidents in nuclear power plant.

건설현장 임시전력 배선의 가설직무에 대한 인간신뢰성 평가 (Human Reliability Assessment for a Installation Task of Temporary Power Cables in Construction Fields)

  • 김두현;이종호;김상철
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an human reliability assessment(HRA) for a installation task of the temporary power cable in construction fields. HRA is evolved to ensure that the workers could reliably perform critical tasks such as a process of the temporary power cable. Human errors are extremely commonplace, with almost everyone committing at least some errors every day. The considerable parts of electric shock accidents in the construction field are caused by a series of human errors. Therefore it is required to analyze the human errors contained in the task causing electric shock event, the event tree analysis(ETA) is adopted in this paper, and particularly human reliability was estimated for a installation task of the temporary power cables. It was assumed that the error probabilities of the human actions may be obtained using the technique for human error rate prediction(THERP). The results show that the predominant task on reliability in the cable installation tasks is check-out tasks and the probability causing electric shock by human errors was calculated as $1.0\times10^{-9}$.

열차운용원의 직무유형 및 직무부하 (Task Types and Loads of Railway Worker)

  • 한규민;고종현;정원대;강정석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1204-1208
    • /
    • 2007
  • In order to prevent railway accidents due to human errors which have been recognized to be the most important cause in the railway accidents, human errors should have been controlled based on systematical analysis of the human errors, and countermeasures should be derived to reduce human error probability. Among several factors inducing human errors, task load (or task complexity) is representative. In order to reduce the human error, a systematic analysis should be undertaken to evaluate task load. In this study, task load according to task types of railway worker who are a safety critical staff have been quantitatively analyzed based on NASA-TLX(Task Load Index).

  • PDF

HUMAN RELIABILITY ASSESSMENT IN CONTEXT

  • HOLLNAGEL ERIK
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.159-166
    • /
    • 2005
  • Human reliability assessment (HRA) is conducted on the unspoken premise that 'human error' is a meaningful concept and that it can be associated with individual actions. The basis for this assumption it found in the origin of HRA, as a necessary extension of PSA to account for the impact of failures emanating from human actions. Although it was natural to model HRA on PSA, a large number of studies have shown that the premises are wrong, specifically that human and technological functions cannot be decomposed in the same manner. The general experience from accident studies also indicates that action failures are a function of the context, and that it is the variability of the context rather than the 'human error probability' that is the much sought for signal. Accepting this will have significant consequences for the way in which HRA, and ultimately also PSA, should be pursued.

열차 운전 종사자를 대상으로 한 인적오류의 개선 방안 연구 (A Study on the Prevention Measures of Human Error with Railway Drivers)

  • 김동원;송보영;이희성
    • 한국안전학회지
    • /
    • 제34권1호
    • /
    • pp.76-81
    • /
    • 2019
  • In this study, the causes of human error were identified through the survey of the drivers of the three organizations: Seoul Metro, Seoul Metropolitan Rapid Transit Corporation, and Korail. It was started with the aim of finding and eliciting causes in various directions including human factors, job factors, and environmental factors. The Cronbach alpha value was 0.95 for the reliability significance of the stress-induced factors in the operational area. The significance probability for organisational factors was shown to be 0.82, and the significance of the sub-accident experience and the driving skill factors in operation was 0.81 In addition, the analysis results showed that stress-induced in the field of driving is higher than the human factors in the reliability analysis. The results of the analysis confirmed that the reliability of the organizational and operational stress-induced factors was higher than other causes. In order to reduce urban railroad accidents, this paper suggests a method for operating safe urban railroad through the minimization human errors.

철도사고 위험도평가를 위한 철도 인간신뢰도분석 방법의 개정과 전산 소프트웨어의 개발 (Revision of the Railway Human Reliability Analysis Procedure and Development of an R-HRA Software)

  • 김재환;김승환;장승철
    • 한국철도학회논문집
    • /
    • 제11권4호
    • /
    • pp.404-409
    • /
    • 2008
  • 본 논문은 크게 두 가지 내용을 담고 있다. 하나는 기 개발된 철도 인간신뢰도분석 방법(R-HRA)의 개정에 관한 내용이며, 다른 하나는 개정된 R-HRA 방법에 기반한 R-HRA 지원 시스템의 개발이다. 개정된 R-HRA 방법은 분석자간 일관성을 유지하기 위한 직무분석 지침의 제공과 영향인자의 분류에 특징을 두고 있으며, R-HRA 지원 시스템은 인간신뢰도분석을 위한 정보의 수집, 내 외적 오류유형을 포함한 정성적 오류분석, 오류확률의 정량화, 전체 분석결과의 문서화 작업 등을 지원하고 있다. 개정된 R-HRA 방법과 지원 소프트웨어는 철도 사고 시나리오에서 발생 가능한 인적오류 가능성을 효과적이고 효율적으로 분석할 수 있도록 지원할 수 있을 것으로 기대된다.

An algorithm for evaluating time-related human reliability using instrumentation cues and procedure cues

  • Kim, Yochan;Kim, Jaewhan;Park, Jinkyun;Choi, Sun Yeong;Kim, Seunghwan;Jung, Wondea;Kim, Hee Eun;Shin, Seung Ki
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.368-375
    • /
    • 2021
  • The performance time of human operators has been recognized as a key aspect of human reliability in socio-complex systems, including nuclear industries. Because of the importance of the time factor, most existing human reliability assessment methods provide ways to quantify human error probabilities (HEPs) that are associated with the performance time. To quantify such kinds of HEPs, it is crucial to rationally predict the length of time required and time available and compare them. However, there have not been detailed guidelines that identify the critical cue presentation time or initial time of human performance, which is important to calculate the time information. In this paper, we introduce a time-related HEP calculation technique with a decision algorithm that determines the critical cue and its timing. The calculation process is presented with the application examples. It is expected that the proposed algorithm will reduce the variability in the time-related reliability assessment and strengthen the scientific evidence of the assessment process. The detailed description is provided in the technical report KAERI/TR-7607/2019.