• Title/Summary/Keyword: Human epidermal keratinocyte

Search Result 42, Processing Time 0.075 seconds

Effects of Titrated Extract of Centella asiatica and Epidermal Growth Factor on the Proliferation of Human Epidermal Keratinocyte (Centella asiatica 추출물 및 표피성장인자가 각질형성세포의 증식에 미치는 효과)

  • 김홍표;김영중
    • Biomolecules & Therapeutics
    • /
    • v.3 no.1
    • /
    • pp.80-84
    • /
    • 1995
  • Effects of titrated extract of Centella asiatica (TECA) and epidermal growth factor (EGF) isolated from the urine of pregnant horse on the proliferation of human epidermal keratinocyte in culture were studied. An increase in the number of keratinocyte was observed with the treatment of TECA at the concentration ranges from 1 $\mu\textrm{g}$/mι to 100 $\mu\textrm{g}$/mι. Effects of low molecular weight EGF (LEGF) and high molecular weight EGF (HEGF) on the proliferation of keratinocyte in culture were also studied. The number of keratinocyte in culture was significantly increased with LEGF and HEGF respectively at the concentration of 10 ng/mι. Simultaneous treatment of the keratinocyte with LEGF, HEGF and TECA led to the increased proliferation of keratinocytes resulting 96% of the effect of a positive control, EGF isolated from mouse submaxillary glands.

  • PDF

Effect of Chlorella Growth Factor on the Proliferation of Human Skin Keratinocyte

  • Yong-Ho Kim;Yoo-Kyeong Hwang;Yu-Yon Kim;Su-Mi Ko;Jung-Min Hwang;Yong-Woo Lee
    • Biomedical Science Letters
    • /
    • v.8 no.4
    • /
    • pp.229-234
    • /
    • 2002
  • Chlorella is rich in chlorella growth factor (CGF). A review of the literature has described that CGF improves the capability of a Th1-based immunity, anticancer, antioxidant antibacterial activity, growth promotion, wound healing and so on, but has not studied the effect for the metabolism and the proliferation of human skin keratinocyte. The aim of this study was to examine the effect of metabolism and the proliferation of human skin keratinocyte in vitro. CGF was extracted with an autoclaving method which is a modified hot-water extraction method from dried chlorella and conformed by means of absorbance 0.22 at 260 nm. We have measured the extracellular acidification rate (ECAR) of the CGF by Cytosensor$^{\circledR}$ Microphysiometer and evaluated responsiveness depending upon the dosage on the HaCaT cell. The ECAR for the concentrations of 0.15, 1.5, 15, 150 $\mu\textrm{g}$/ml of CGF increased as a 103.6, 128.2, 149.0 and 423.9%, respectively compared to control (0.0 $\mu\textrm{g}$/ml, 100% ECAR). The ECAR for ErbBl tyrosine kinase inhibited by 4-anilinoquinazolines, $C_{16}$H$_{14}$BrN$_3$O$_2$.HCl on tile HaCaT cells with the amounts of 10 $\mu\textrm{g}$/ml of the CCF compared with 100 $\mu\textrm{g}$/ml of rhEGF. The conclusion of the study is that CGF might increase human epidermal keratinocyte proliferation through the interaction between the epidermal growth factor receptor and itself.

  • PDF

Engineering of a Human Skin Equivalent

  • Ghalbzouri Abdoelwaheb El
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.105-130
    • /
    • 2003
  • Human skin equivalents, also designated as cultured skin substitute (Boyce and Warden, 2002) or organotypic co-cultures (Maas-Szabowski et al., 1999, 2000, 2003), are three-dimensional systems that are engineered by seeding fibroblasts into a three-dimensional dermal matrix. Such a dermal equivalent is then subsequently seeded with human keratinocytes. After cell attachment, the culture is kept first under submerged condition to allow keratinocyte proliferation. Thereafter, the culture is lifted the air-liquid interface (A/L) to expose the epidermal compartment to the air, and to further induce keratinocyte differentiation. During the air-exposure, nutrients from the medium will diffuse through the underlying dermal substrate towards the epidermal compartment and support keratinocyte proliferation and differentiation. Under these conditions, a HSE is formed that shows high similarity with the native tissue from which it was derived (Figure 1) (Bell et at., 1981; Boyce et al., 1988; Ponec et al., 1997;El Ghalbzouri et al.., 2002).

Detection of Protein Kinase C Isoenzymes in the Growth of Human Epidermal Keratinocytes by Growth Factors (Growth Factor를 처리한 피부상피세포로부터 Protein Kinase C Isoenzyme의 검출)

  • Eun-Young Joo;Nam-Woo Kim
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • Subconfluent neonatal human epidermal keratinocytes were treated with a concentration 200 ng/$m\ell$ of human recombinant epidermal growth factor (hrEGF), human recombinant insulin-like growth factor-1 (hrIGF-1), and with a combination of hrEGF and hrIGF-1. Cytoplasmic and membrane-associated proteins were extracted and assayed. Proteins were separated by SDS-PAGE, and subjected to the western blot analysis. In the cytoplasmic fraction, the PKC concentration of keratinocyte treated with hrIGF-1 was higher than the control group, but the concentration of control group was the highest than the others in the membrane fraction. In the cytoplasmic fraction, EGF stimulated PKC-$\beta$II, -$\delta$, -$\theta$, and also stimulated PKC-$\alpha$, -$\beta$I, -$\delta$, -$\Im$ and -$\theta$ in the membrane fraction. IGF-1 stimulated PKC-$\beta$I, -$\Im$ and -$\theta$ in the cytoplasmic, PKC-$\alpha$, -$\beta$I, -$\delta$, -$\Im$, - $\varepsilon$ and -$\theta$ in the membrane. In the cells treated with a combination of EGF and IGF-1, PKC-$\alpha$, -$\beta$I, -$\Im$ and -$\theta$ in the cytoplasmic fraction, PKC-$\alpha$, -$\delta$, -$\Im$, -$\varepsilon$ and -$\theta$ in the membrane fraction were stimulated.

  • PDF

Effect of LED Irradiation on Proliferation of Human Epidermal Keratinocyte for Convergence (LED조사가 인간 피부 각질세포의 증식에 미치는 융복합적인 영향)

  • Park, Jeong-Sook;Kim, Mi Hye;Lee, Jae-Hyeok
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.639-644
    • /
    • 2016
  • The purpose of this study is to determine the effect of the light-emitting-diode (LED) to investigate proliferation of human epidermal keratinocyte and collagen, procollagen expression. In order to determine whether LED irradiation can safely be applied to human skin, the proliferative effects of LED irradiation were determined by MTS assay in Human Epidermal Keratinocytes. Wavelength of 470nm LED irradiation increased mRNA expression of collagen, procollagen without cytotoxity. Our results suggest that 470nm LED irradiation may have a proliferative effects and collagen synthesis property. In order to determine whether LED irradiation can safely be applied to human skin, the cytotoxic effects of LED irradiation were determined by MTS assay in Human Dermal Fibroblasts (HDF). As far as we know, this is the first report demonstrating in vitro collagen synthesis activity of 470nm LED irradiation and being a scientific basis for the cosmetic.

Epidermal Homeostasis and Dry Skin Management (표피항상성과 건조피부의 관리)

  • Park, Chang-Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Epidermis is one of the most dynamic organs in the human body. Multiple layers of keratinocytes in the epidermis continuously undergo proliferation, differentiation, and desquamation cycles, which is the bases of maintaining the epidermal homeostasis. Epidermal homeostasis eventually leads to establish and maintain permeability barrier homeostasis, the most important function of the epidermis. The permeability barrier is located in the stratum corneum. Tightly coordinated regulations are required for the sustained normal barrier function. Extensive studies have established that several nuclear hormone liposensors, including peroxisome proliferator-activated receptor a PPARa, PPARb/d, PPARg and LXRs are expressed in keratinocyte. Activation of PPARs and LXRs could provide a mechanism to coordinate the formation of the corneocytes and extracellular lipid membranes that constitute the stratum corneum. Topical application of PPAR/LXR ligands to murine skin results in the increased expression of keratinocyte differentiation-related proteins, such as involucrin, loricrin, profilaggrin, and trans-glutaminase 1, which would stimulate cornified envelope formation. In conclusion, topical application of ligands or activators of PPAR/LXR as an epidermotherapy would be a promising option to deal dry skin conditions such as atopy.

Betaine Induces Epidermal Differentiation by Enhancement of Autophagy through an mTOR-independent Pathway (Betaine의 mTOR 비의존적 자가포식 작용 촉진에 의한 표피 분화 유도 효과)

  • Choi, Seon-Guk;Kim, Mi-Sun;Kim, Jin-Hyun;Park, Sun Gyoo;Lee, Cheon Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The epidermis which is stratified by epithelial tissue renewal based on keratinocyte differentiation protects the organism from various environmental insults by forming a physical barrier. Autophagy is a mechanism which mediates lysosomal delivery and degradation of protein aggregates, damaged organelles and intracellular microorganisms. Recent reports have shown that autophagy has critical roles for proper terminal differentiation to stratum corneum via removing metabolic organelles and nuclei. However, whether increasing autophagy can activate epidermal differentiation is unknown. Here, we screened a library of natural single compounds and discovered that betaine specifically increased the LC3 positive cytosolic punctate vesicles and LC3-I to LC3-II conversion in HaCaT human keratinocyte cell line, indicating increased autophagy flux. mTOR pathway, which negatively regulates autophagy, was not affected by betaine treatment, suggesting betaine-induced autophagy through an mTOR-independent pathway. Betaine-induced autophagy was also observed in primary human keratinocyte and skin equivalent. Furthermore, epidermal thickness was increased in skin equivalent under betaine treatment. Overall, our finding suggests that betaine as a novel regulator of autophagy may induce epidermal turnover and improve the skin barrier abnormality of the aged epidermis.

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Chitosan Increases α6 Integrinhigh/CD71high Human Keratinocyte Transit-Amplifying Cell Population

  • Shin, Dong-Wook;Shim, Joong-Hyun;Kim, Yoon-Kyung;Son, Eui-Dong;Yang, Seung-Ha;Jeong, Hye-Jin;Lee, Seok-Yong;Kim, Han-Kon;Park, Soo-Nam;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.280-285
    • /
    • 2010
  • Glycosaminoglycans (GAGs) and chitosan have been used as matrix materials to support the dermal part of skin equivalent which is used for both pharmacological and toxicological evaluations of drugs potentially used for dermatological diseases. However, their biological roles of GAGs and chitosan in the skin equivalent are still unknown. In the present study, we evaluated whether GAGs and chitosan directly affect keratinocyte stem cells (KSCs) and their transit-amplifying cells (TA cells). Among supporting matrix materials, chitosan significantly increased the number of ${\alpha}6$ $integrin^{high}/CD71^{high}$ human keratinocyte TA cells by 48.5%. In quantitative real-time RT-PCR analysis, chitosan significantly increased CD71 and CD200 gene transcription whereas not ${\alpha}6$ integrin. In addition, the level of the gene transcription of both keratin 1 (K1) and K10 in the chitosan-treated human keratinocytes was significantly lower than those of control, suggesting that chitosan inhibit keratinocyte differentiation. We also found that N-acetyl-D-glucosamine (NAG) and $\beta$-(1-4)-linked D-glucosamine (D-glc), two components of chitosan, have no effect on the expression of CD71, K1, and K10, suggesting that each monomer component of chitosan is not enough to regulate the number of epidermal keratinocyte lineage. Conclusively, chitosan increases keratinocyte TA cell population which may contribute to the cellular mass expansion of the epidermal part of a skin equivalent system.

Phosphatidylserine Enhances Skin Barrier Function Through Keratinocyte Differentiation (포스파티딜세린의 각질세포 분화 유도를 통한 피부장벽 기능 강화)

  • Chung, So-Young;Nam, Sang-June;Choi, Wang-Keun;Seo, Mi-Young;Kim, Jin-Wook;Lee, Seung-Hun;Park, Chang-Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.17-22
    • /
    • 2006
  • Phosphatidyiserine (PS) is a phospholipid which plays the structural role in membranes and serves as a cofactor of signaling enzymes for diverse cellular functions. In this study, we observed that topical treatment with PS significantly decreased trans-epidermal water loss (TEWL) induced by tape-stripping in hairless mice. Also, ceramides in epidermis were increased in PS-treated group compared to vehicle-treated one in vivo. the amounts of non-hydroxyl ceramide (NHCER) (1.4 fold) and glucosylceramide (glucosylCER) (1.6 fold), in the skin of hairless mice, were increased by topical treament with PS. Also, we demonstrated that PS stimulated keratinocyte differentiation. We observed that PS treatment morphologically altered normal human keratinocyte (NHK) from the proliferating phase to the differentiating one, suggesting that PS stimulated epidermal differentiation in NHK. We also showed that the expressions of the specific markers for epidermal differentiation, involucrin (INV) (3.5 fold up) and transglutaminase 1 (TG'ase 1) (3 fold up), were significantly increased by PS treatment, compared to untreated control in vitro. In addition, topical treatment with PS resulted in a progressive increase in INV and loricrin protein levels in vivo. In conclusion, we provide the first evidence for the physiological activities of PS in skin, and we suggest that PS strengthen the epidermal permeability harrier by stimulation of keratinocyte differentiation.