• 제목/요약/키워드: Human driver driving data

검색결과 49건 처리시간 0.027초

최적예견 제어 기법을 이용한 운전자 조향 모델의 개발 및 검증 (Development and Validation of A Finite Optimal Preview Control-based Human Driver Steering Model)

  • 강주용;이경수;노기한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.855-860
    • /
    • 2007
  • This paper describes a human driver model developed based on finite preview optimal control method. The human driver steering model is constructed to minimize a performance index which is a quadratic form of lateral position error, yaw angle error and steering input. Simulation studies are conducted using a vehicle simulation software, Carsim. The Carsim vehicle model is validated using vehicle test data. In order to validate the human driving steering model, the human driver steering model is compared to the driving data on a virtual test track(VTT) and the actual vehicle test data. It is shown that human driver steering behaviors can be well represented by the human driver steering model presented in this paper

  • PDF

운전자 주행 특성을 고려한 차량 적응 순항 제어기 설계 (A Vehicle Adaptive Cruise Control Design in Consideration of Human Driving Characteristics)

  • 구자성;이경수
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.32-38
    • /
    • 2006
  • A vehicle adaptive cruise control strategy based on human drivers' driving characteristics has been investigated. Human drivers driving characteristics have been analyzed using vehicle test data obtained from 125 participants. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would reduce the workload of the human driver. Vehicle following characteristics of the cruise controlled vehicle have been compared to real-world driving radar sensor data of human drivers using a validated vehicle simulator. and compare nominal cruise control and adaptive cruise control.

운전자 주행 특성 파라미터를 고려한 지능화 차량의 적응 제어 (Driver Adaptive Control Algorithm for Intelligent Vehicle)

  • 민석기;이경수
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1146-1151
    • /
    • 2003
  • In this paper, results of an analysis of driving behavior characteristics and a driver-adaptive control algorithm for adaptive cruise control systems have been described. The analysis has been performed based on real-world driving data. The vehicle longitudinal control algorithm developed in our previous research has been extended based on the analysis to incorporate the driving characteristics of the human drivers into the control algorithm and to achieve natural vehicle behavior of the adaptive cruise controlled vehicle that would feel comfortable to the human driver. A driving characteristic parameters estimation algorithm has been developed. The driving characteristics parameters of a human driver have been estimated during manual driving using the recursive least-square algorithm and then the estimated ones have been used in the controller adaptation. The vehicle following characteristics of the adaptive cruise control vehicles with and without the driving behavior parameter estimation algorithm have been compared to those of the manual driving. It has been shown that the vehicle following behavior of the controlled vehicle with the adaptive control algorithm is quite close to that of the human controlled vehicles. Therefore, it can be expected that the more natural and more comfortable vehicle behavior would be achieved by the use of the driver adaptive cruise control algorithm.

HUMAN-CENTERED DESIGN OF A STOP-AND-GO VEHICLE CRUISE CONTROL

  • Gu, J.S.;Yi, S.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.619-624
    • /
    • 2006
  • This paper presents design of a vehicle stop-and-go cruise control strategy based on analyzed results of the manual driving data. Human drivers driving characteristics have been investigated using vehicle driving data obtained from 100 participants on low speed urban traffic ways. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would feel comfortable to the human driver under low speed stop-and-go driving conditions. Vehicle following characteristics of the cruise controlled vehicle have been investigated using a validated vehicle simulator and real driving radar sensor data.

A Vehicle Stop-and-Go Control Strategy based on Human Drivers Driving Characteristics

  • Yi Kyongsu;Han Donghoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.993-1000
    • /
    • 2005
  • A vehicle cruise control strategy designed based on human drivers driving characteristics has been investigated. Human drivers driving patterns have been investigated using vehicle driving test data obtained from 125 participants. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would feel comfortable to the human driver. Vehicle following charac­teristics of the cruise controlled vehicle have been investigated using real-world vehicle driving test data and a validated simulation package.

드라이빙 시뮬레이터 주행과 현장주행시 운전자 반응 비교 연구 (Comparative Study on Difference in Driver's Workload between Driving Simulator and Field Driving in Tunnel, Highway)

  • 김현진;김주영;최경임;주재홍;오철
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.139-145
    • /
    • 2017
  • PURPOSES : This study analyzed the difference in a driver's workload between using a driving simulator and field driving in tunnel, highway. METHODS : Based on the literature review, it was found that a driver's workload could be quantified using biosignals. This study analyzed the biosignal data of 30 participants using data collected while they were using a driving simulator and during a field test involving tunnel driving. Relative energy parameter was used for biosignal analysis. RESULTS : The driver's workload was different between the driving simulator and field driving in tunnels, highway. Compared with the driving simulator test, the driver's workload exhibited high value in field driving. This result was significant at the 0.05 level. The same result was observed before the tunnel entrance section and 200 m after the entrance section. CONCLUSIONS : This study demonstrates the driving simulator effect that drivers feel safer and more comfortable using a driving simulator than during a field test. Future studies should be designed considering the result of this study, age, type of simulator, study site and so on.

시뮬레이터를 이용한 장대터널 내에서의 운전자 특성 연구 (A Study on Driver's Characteristics in Long Tunnel Using Driving Simulator)

  • 박형진;황경주;신현주
    • 대한인간공학회지
    • /
    • 제26권2호
    • /
    • pp.89-102
    • /
    • 2007
  • Generally, it is well known that driving in tunnel imposes large burden to driver because of spatial constraint, limited visual field and so on. And such a burden of driver result in high accident occurrence. In this reason, studies dealing with features of driving and traffic flow in tunnel have been performed. However, information about characteristics of drivers and traffic in a very long tunnel is not accumulated yet. The purpose of this study is to identify the relations between tunnel length and burden of driver, driving patterns, traffic flow characteristics using the tunnel simulator that realizing various tunnel situations. For this, the tunnel simulation program was developed along 11km-length section. And biological data of 10 subjects gained from driving condition in simulation program was analyzed and compared with the result of real driving condition.

운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발 (Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour)

  • 김진용;정창현;정민지;정도현;우진명
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

DESIGN AND EVALUATION OF INTELIGENT VEHICLE CRUISE CONTROL SYSTEMS USING A VEHICLE SIMULATOR

  • Han, D.H.;Yi, K.S.;Lee, J.K.;Kim, B.S.;Yi, S.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.377-383
    • /
    • 2006
  • This paper presents evaluation and comparisons of manual driving and driving with intelligent cruise control(ICC) systems. An intelligent vehicle cruise control strategy has been designed to achieve natural vehicle behavior of the controlled vehicle that would make human driver feel comfortable and therefore would increase driver acceptance. The evaluation and comparisons of the ICC and manual driving have been conducted using real-world vehicle driving data and an ICC vehicle simulator.