• Title/Summary/Keyword: Human colon cancer

Search Result 498, Processing Time 0.026 seconds

[ ${\alpha}$ ]-Amyrin Triterpenoids and Two Known Compounds with DNA Topoisomerase I Inhibitory Activity and Cytotoxicity from the Spikes of Prunella vulgaris var. lilacina

  • Byun, Soon-Jung;Fang, Zhe;Jeong, Su-Yang;Lee, Chong-Soon;Son, Jong-Keun;Woo, Mi-Hee
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.359-364
    • /
    • 2007
  • Three known ${\alpha}$-amyrin triterpenoids, ursolic acid (1), $2{\alpha},3{\alpha}$-dihydro xyurs-12-ene-28-oic acid (2) and euscaphic acid (3), and ${\beta}$-amyrin triterpenoid, $3{\beta}$-hydroxyolean-5,12-diene (4), and ${\alpha}$-spinasterol (5) have been isolated from the fractionated n-butanol extracts of the spikes of Prunella vulgaris var. lilacina, guided by DNA topoisomerases I and II inhibitory activities and cytotoxic activity against human cancer cells. Their structures were elucidated on the basis of spectroscopic and chemical methods. Compound 4 exhibited significant cytotoxic activity against human colon adenoblastoma (HT-29), and 5 showed DNA topoisomerase I and II inhibitions.

Antioxidative and Antitumor Activity of Extracts from Saussurea lappa (목향 추출물의 항산화 및 항암활성)

  • Song, Jin-Wook;Min, Kyung-Jin;Cha, Chun-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.55-61
    • /
    • 2008
  • This study was carried out to investigate the antioxidative and antitumor activities of Saussurea lappa for the purpose of developing a functional food. The methanol extract of Saussurea lappa was fractionated with five solvents (hexane, chloroform, EtOAc, BuOH, water) and examined for antioxidative activities and xanthine oxidase inhibitory activity in addition to growth inhibitory activity of human cancer cell (HT-29, SNU-1, HeLa). Total phenol compound contents were higher in EtOAC fraction than other fractions. Also, electron donating ability was over 90% at $500{\mu}g/ml$ (93.1 %) and $1000{\mu}g/ml$ (94.3%). The hexane fraction revealed stronger nitrite scavenging ability than the positive control (ascorbic acid) and its abilities were 22.4% and 42.8% at $500{\mu}g/ml$ and $1000{\mu}g/ml$, respectively. Xanthine oxidase inhibitory activity had similar tendency to electron donating ability. The EtOAc fraction showed high inhibition to xanthien oxidase activities at $500{\mu}g/ml$(81.9%) and $1000{\mu}g/ml$(90.4%). In the antitumor activity test, the hexane fraction exhibited potent growth inhibition activity against HT-29, SNU-1 and HeLa cells. Therefore, we believe that Saussurea lappa can be developed into a functional food with antioxidant activity. Additional studies are required for the hexane and chloroform fractions of Saussurea lappa to develop them into therapeutic supplements for stomach cancer, colon cancer, and cervical cancer.

Apoptosis Induction in MV4-11 and K562 Human Leukemic Cells by Pereskia sacharosa (Cactaceae) Leaf Crude Extract

  • Asmaa, Mat Jusoh Siti;Al-Jamal, Hamid Ali Nagi;Ang, Cheng Yong;Asan, Jamaruddin Mat;Seeni, Azman;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.475-481
    • /
    • 2014
  • Background: Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Materials and Methods: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. $IC_{50}$ concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. Results: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. Conclusions: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

Antineoplastic Effect of Extracts from Traditional Medicinal Plants and Various Plants (II) (전통 약용식물 및 각종 식물의 항암효과에 대한 연구(II))

  • Hyun, Jin-Won;Lim, Kyoung-Hwa;Shin, Jin-E;Sung, Min-Sook;Oh, Jae-Hwan;Yang, Yong-Man;Won, Yong-Jin;Kim, Yeong-Shik;Kang, Sam-Sik;Chang, Il-Moo;Paik, Woo-Hyun;Kim, Hyoung-Ja;Woo, Eun-Rhan;Park, Ho-Koon;Park, Jae-Gahb
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.4 s.99
    • /
    • pp.382-387
    • /
    • 1994
  • Antineoplastic activity against human gastric and colon carcinoma cell lines was measured in 49 extracts from 46 plants using MTT (3-[4, 5-dimethyl thiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) method. Six extracts from five plants have been reported to have antineoplastic effect. Extracts from remaining 41 plants failed to show significant cytotoxic effect at the concentration of less than $230\;{\mu}g/ml$.

  • PDF

Effects of Sodium Butyrate on the Biosynthesis of Sphingolipids in HT29, a Human Colon Cancer Cell Line (Sodium Butyrate 처리가 대장암 세포주인 HT29 Cell의 Sphingolipid 생합성에 미치는 영향)

  • 김희숙
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • Butyrate is one of the short-chain fatty acids that are present in the colon of mammals in millimolar concentration as a result of microbial anaerobic fermentation of dietary fiber, undigested starch, and proteins. In this study, sodium butyrate was examined in HT29 cell, human colonic cancer cell line, on cell viability, alkaline phosphatase activity, PLC-${\gamma}$1 expression and complex sphingolipid biosynthesis. Treatment with butyrate showed that the decrease of cell adhesion and viability was time-dependent. Sodium butyrate also induced to increase the activity of alkaline phosphatase which is a differentiation marker enzyme and decrease the expression of PLC-${\gamma}$1. Biosynthesis of sphingomyelin and galactosylceramide by butyrate treatment were decreased so fast but ceramide was increased 680dpm/mg protein% more than untreated group on first day and then decreased fast. In addition, acid ceramidase and neutral ceramidase activity were inhibited early stage by sodium butyrate. These results suggest that sodium butyrate causes cell differentiation or cell growth arrest of HT29 cell accompanied by early increase of ceramide content and alkaline phosphatase activity and decrease of galactosylceramide content and PLC-r1 expression.

  • PDF

Involvement of Early Growth Response Gene 1 (EGR-1) in Growth Suppression of the Human Colonic Tumor Cells By Apigenin and Its Derivative Isovitexin (Apigenin과 대사물 isovitexin에 의한 인체 대장암세포의 세포활성 억제효과에 있어서의 EGR-1의 역할 연구)

  • Moon, Yu-Seok;Cui, Lei-Guang;Yang, Hyun
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.110-115
    • /
    • 2007
  • It has been previously described that transcription factor early growth response gene product 1 (EGR-1) functions as a tumor suppressor gene. This study was conducted to demonstrate that EGR-1 induction by phytochemical apigenin and its derivative isovitexin can mediate the growth suppression of the intestinal epithelial tumor cells. Apigenin and isovitexin induced EGR-1 gene expression both in the dose and time-dependent manners. Moreover the induction was relatively late around 9-12 hr after treatment of HCT-116 cells, while several anti-inflammatory agent such as NSAIDS and catechins elicit the ECR-1 gene expression at much earlier time about 1-3 hr after treatment. In terms of signal transduction, ERK1/2 was critical for apigenin-induced EGR-1 gene expression and its promoter activation. When EGR-1 gene expression was blocked with EGR-1 small interference RNA, the cytotoxicity of apigenin in the human epithelial cells was attenuated, suggesting the involvement of EGR-1 in the anti-tumoric activity of apigenin. To link the EGR-1 induction to EGR-1-regulated gene products in colon cancer, NSAID-Activated Gene 1 (NAG-1) was demonstrated to be elevated by apigenin and isovitexin at 24-48 hr after treatment. Taken together, apigenin-activated ERK1/2 mediated EGR-1 gene induction, which was associated with suppression of the cellular viability by apigenin compound.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.

Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells (결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.400-409
    • /
    • 2021
  • Sanguinarine, a natural benzophenanthridine alkaloid, has been considered a potential therapeutic target for the treatment of cancer because it can induce apoptosis in human cancer cells; however, the underlying mechanisms of action still remain unclear. Tumor suppressor p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to anticancer agents. Therefore, in the present study, the role of p53 during apoptosis induced by sanguinarine was investigated in p53wild type (WT, p53+/+) and p53null (p53+/+) HCT116 colon carcinoma cells. Sanguinarine significantly caused greater reductions in cell viability in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells. Consistently, sanguinarine promoted more DNA damage and apoptosis in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells while increasing the expression of p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1. Sanguinarine increased the activity of caspase-8 and caspase-9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and it activated caspase-3, a typical effect caspase, in HCT116 (p53+/+) cells. Sanguinarine also increased the generation of reactive oxygen species (ROS), and the Bax/Bcl-2 ratio, while destroying the integrity of mitochondria in HCT116 (p53+/+) cells, but not in HCT116 (p53-/-) cells. Overall, the results indicate that sanguinarine induced p53-dependent apoptosis through ROS-mediated activation of extrinsic and intrinsic apoptotic pathways in HCT116 colorectal cancer cells.

Heavy Metal Contents and Antioxidant Activity and Cytotoxic Effect of Red Sea Bream (Pagrus major): Comparative Studies in Domestic and Imported Red Sea Bream (Pagrus major) (국내산 및 수입산 참돔의 중금속 함량 및 항산화 활성과 세포독성 효과 비교)

  • Hwang, Seong Yeon;Bae, Jin Han;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.450-455
    • /
    • 2015
  • This study compared the heavy metal contents and the effects of extracts from domestic and imported red sea bream on the antioxidant activity and cytotoxicity of human cancer cell lines. The antioxidant activity was measured using the fluorescently sensitive dye, 2’-7’ dichlorofluorescein-diacetate (DCFH-DA), and antiproliferative activity against AGS human gastric adenocarcinoma and HT-29 human colon cancer cell lines, which was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Domestic red sea bream had a higher mercury content when compared to imported red sea bream, but there was no significant difference in the lead content. Treatments with acetone/methylene chloride (A+M) and methanol (MeOH) extracts from domestic and imported red sea bream dose-dependently decreased the H2O2 induced ROS production, compared to the control. The cell viability showed that treatments with the A+M and MeOH extracts had cytotoxicity in the growth of AGS and HT-29 cancer cells. In the case of AGS, the extracts from the domestic red sea bream were higher in inhibiting cancer cell growth, compared to imported red sea bream. Our results demonstrate that the heavy metal contents of domestic and imported red sea bream were below the limit of the Food Code of Korea. The results of the biological activities indicate that the antioxidant activity of extracts from imported red sea bream was more effective, while the extracts from the domestic red sea bream were stronger in cytotoxic activity.

Effect of Solvent Fractions from Methanol Extract of Doenjang on Inhibition of Growth and DNA Synthesis of Human Cancer Cells. (인체 암세포 성장 및 DNA 합성 억제에 미치는 된장 분획물의 영향)

  • LIM Sun-Young;Rhee Sook-Hee;Park Kun-Young
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.685-691
    • /
    • 2005
  • Growth and DNA synthesis inhibitory effects of doenjang methanol extract and its solvent fractions on AGS human gastric adenocarcinoma cells, Hep 3B human hepatocellular carcinoma cells, HT-29 human colon cancer cells and MG-63 human osteosarcoma cells were studied. The treatment of doenjang methanol extract ($ 200{\mu}g/ml $) with the AGS, Hep 3B, HT-29 and MG-63 cancer cells after 6 days of incubation inhibited the growth of cancer cells by $32\%$, $51\%$, $84\%$ and $33\%$, respectively. To separate active compounds of doenjang, doenjang methanol extract was fractionated with dichloromethane, ethylacetate, and buthanol. Among the solvent fractions, the dichloromethane and ethylacetate fractions showed the highest growth inhibitory effects on various cancer cells. For example, the dichloromethane and ethylacetate fractions ($200a{\mu}g/ml$) sig-nificantly inhibited the growth of various cancer cells by $89\∼96\%$ and$62\∼86\%$, respectively. DNA synthesis of AGS and Hep 3B cancer cells was significantly inhibited by adding dichloromethane fraction ($200{\mu}g/ml$) up to $94\%$ and $80\%$, respectively. Similarly, the ethylacetate fraction ($ 200\mug/ml $) showed a $ 95\% $ inhibition rate of DNA synthesis in AGS cells. These results suggest that the dichloromethane and ethylacetate fractions have specific active compounds, which will explain this anticancer effect of doenjang.