• Title/Summary/Keyword: Human bone

Search Result 1,219, Processing Time 0.027 seconds

Vertical bone augmentation using collagenated or non-collagenated bone substitute materials with or without recombinant human bone morphogenetic protein-2 in a rabbit calvarial model

  • Hyun-Chang Lim;Kyeong-Won Paeng;Ui-Won Jung;Goran I. Benic
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.429-443
    • /
    • 2023
  • Purpose: The aim of this study was to determine 1) the bone-regenerative effect of porcine bone block materials with or without collagen matrix incorporation, 2) the effect of a collagen barrier, and 3) the effect of adding recombinant human bone morphogenetic protein-2 (rhBMP-2) to the experimental groups. Methods: Four treatment modalities were applied to rabbit calvaria: 1) deproteinized bovine bone mineral blocks (DBBM), 2) porcine bone blocks with collagen matrix incorporation (PBC), 3) porcine bone blocks alone without collagen matrix incorporation (PB), and 4) PBC blocks covered by a collagen membrane (PBC+M). The experiments were repeated with the addition of rhBMP-2. The animals were sacrificed after either 2 or 12 weeks of healing. Micro-computed tomography (micro-CT), histologic, and histomorphometric analyses were performed. Results: Micro-CT indicated adequate volume stability in all block materials. Histologically, the addition of rhBMP-2 increased the amount of newly formed bone (NB) in all the blocks. At 2 weeks, minimal differences were noted among the NB of groups with or without rhBMP-2. At 12 weeks, the PBC+M group with rhBMP-2 presented the greatest NB (P<0.05 vs. the DBBM group with rhBMP-2), and the PBC and PB groups had greater NB than the DBBM group (P>0.05 without rhBMP-2, P<0.05 with rhBMP-2). Conclusions: The addition of rhBMP-2 enhanced NB formation in vertical augmentation using bone blocks, and a collagen barrier may augment the effect of rhBMP-2.

Clinical Outcome of Implants Placed in Grafted Maxillary Sinus Using Recombinant Human Bone Morphogenetic Protein-2: A 5-year Follow-Up Study

  • Yu-Jeong Baek;Jin-Ho Lee;Hyo-Jeong Kim;Bok-Joo Kim;Jang-Ho Son
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • Purpose: To investigate the 5-year outcome of dental implants placed in a grafted maxillary sinus using recombinant human bone morphogenetic protein-2 (rhBMP-2). Materials and Methods: We retrospectively analyzed 27 implants after maxillary sinus floor augmentation (MSFA) using rhBMP-2 in 16 patients between January 2016 and March 2017. The study evaluated two outcome variables: (1) 5-year cumulative survival and success rate of the implant after functional loading and (2) marginal bone loss (MBL) for implant failure. Results: The average residual bone height was 4.78±1.53 mm. The healing period before loading was 8.35±2.34 months. The crown-to-implant ratio was 1.31±0.26. The 5-year cumulative survival and success rate after functional loading were 100% and 96.3%, respectively. The 5-year average MLB was 0.89±0.82 mm. Conclusion: Placing dental implants with MSFA using rhBMP-2 is a reliable procedure with favorable long-term survival and success rates.

THE HISTOLOGIC STUDY OF THE GRAFTED hBMP-I FOR IMMEDIATE IMPLANT FIXATION (발치 후 즉시 임플란트 식립시 이식된 hBMP-I의 조직학적 고찰)

  • Lee, Eun-Young;Kim, Kyoung-Won;Choi, Hee-Won;Um, In-Woong;Chung, Ho-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.316-322
    • /
    • 2004
  • A low molecular weight component named bone morphogenetic protein(BMP) chemically isolated from the organic matrix of bone, induce postfetal connective tissue cells surrounding small blood vessels to differentiate into cartilage and bone. The end product of BMP is a spherical ossicle of lamella bone filled with red bone marrow for the functional loading. This is a important point that the graft material is embedded the defect site during the implant surgery. Because present knowledge of the relationship between BMP and bone regeneration arises mainly from studies of induced bone formation in heterotopic sites, it would be helpful to determine whether BMP plays any part in the process of bone healing. The BMPs have been shown to play crucial roles in normal skeletal development as well as bone healing and are able to activate transcription of genes involved in cellular migration, proliferation, and differentiation. The delivery of BMP on matrices has been efficacious in the treatment of defect bone in implant surgery. The purpose of the histologic study was to evaluate the effect of DLB(demineralized lyophilized bone) coated with purified human BMP(hBMP-I) in immediate implant surgery with bony defect to obtain the functional structure of implant asap. The ability of a graft of hBMP-I to accelerate bony defect repair provides a rationale for its use in immediate implant surgery that have large bone defect in edentulous area.

EFFECTS OF ALENDRONATE AND PAMIDRONATE ON THE PROLIFERATION AND THE ALKALINE PHOSPHATASE ACTIVITY OF HUMAN BONE MARROW DERIVED MESENCHYMAL STEM CELLS (Alendronate와 Pamidronate가 인간 골수유래 간엽줄기세포의 증식과 알칼리성 인산분해효소 활성에 미치는 영향)

  • Kim, Young-Ran;Ryu, Dong-Mok;Kwon, Yong-Dae;Yun, Yong-Pil
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.6
    • /
    • pp.397-402
    • /
    • 2009
  • The purpose of this study is to investigate the effects of alendronate and pamidronate on proliferation and the alkaline phosphatase activity of human bone marrow derived mesenchymal stem cells and to relate the results with bisphosphonate related osteonecrosis of the jaw(BRONJ). With the consent of patients with no systemic disease and undergoing iliac bone graft, cancellous bone was collected to obtain human bone marrow derived mesenchymal stem cells through cell culture. 96 well plate were prepared with a concentration of $10^4$cell/ well. Alendronate and pamidronate were added to each well with the concentration of $10^{-6}M$, $10^{-8}M$ and $10^{-10}M$, respectively. Then proliferation capacity of each well was evaluated with the cell counting kit. 24 well plates were prepared with a concentration of $10^5$cell/ml/well and with the bone supplement, alendronate and pamidronate were added with the concentration of $10^{-6}M$, $10^{-8}M$ and $10^{-10}M$, respectively on each plate. The plates were cultured for either 24 or 72 hours. Then the cells were sonicated to measure the alkaline phosphatase activity and protein assay was done to standardize the data for analysis. As the concentration of alendronate or pamidronate added to the culture increased, the proliferation capacity of the cells decreased. However, no statistical significance was found between the group with $10^{-10}M$ of bisphophonate and the control group. Pamidronate was not capable of increasing the alkaline phosphatase activity in all trials. However, alkaline phosphatase activity increased with 24 hours of $10^{-8}M$ of alendronate treatment and with 48 hours of $10^{-10}M$ of alendronate treatment. Cell toxicity increased as the bisphosphonate concentration increased. This seems to be associated with the long half life of bisphosphonate, resulting in high concentration of bisphosphonate in the jaw and thus displaying delayed healing after surgical procedures. Alendronate has shown to increase the alkaline phophatase activity of human bone marrow derived mesenchymal stem cells. However, this data is insufficient to conclude that alendronate facilitates the differentiation of human bone marrow derived mesenchymal stem cells. Further studies on DNA level and animal studies are required to support these results.

A Study on Elbow Phantom Production and Usability Evaluation by Adjusting Infill Density using 3D Printing (3D 프린팅을 사용한 Infill 조절에 따른 Elbow 팬텀 제작 및 유용성 평가에 관한 연구)

  • Myung-In Kim;Seung-Ho Ji;Hyun-Seop Wi;Dae-Won Lee;Hui-Min Jang;Myeong-Seong Yun;Dong-Kyoon Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.929-937
    • /
    • 2023
  • Human equivalent phantoms manufactured using 3D printers are cheaper and can be manufactured in a short time than conventional human phantoms. However, many phantoms are manufactured with less than 100 % of Infill Density, one of the 3D printer output setting variables. Therefore, this study compared the Bone Phantom CT number, which differs from the ratio of five Infill Density produced using a 3D printer, to the CT number of the actual human body Bone. In addition, the usefulness of the manufactured phantom was evaluated by producing a 100 % elbow joint phantom with Infill Density and setting the Infill Density to 100 % through CT number comparison for each tissue on computed tomography (CT). As a result, the Bone Phantom printed with 100 % Infill Density did not show the most statistically significant difference from the CT number value of the actual human Bone, and the CT number of each tissue did not show a statistically significant difference from the CT number value of each tissue of the actual human elbow joint.

Carthamus tinctorius L. Increases BMP-2 Gene Expression during Bone Fracture Healing in Rats

  • Lee, Kwang-Hee;Sohn, Oog-Jin;Ahn, Jong-Chul;Kim, Yong-Woon;Park, So-Young;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.143-147
    • /
    • 2006
  • Carthamus tinctorius L.is known to improve fracture healing, and bone morphogenetic proteins (BMPs) are associated with the formation and healing process of bone. BMP-2 and BMP-7 are two of the most important BMPs during the bone healing process. Human osteosarcoma MG63 cells and rats were used to determine the effects of Carthamus tinctorius L. extract (CTE) on BMP-2 gene expression. BMP-2 gene expression by CTE treatment in human osteosarcoma MG63 cells was not different from the control group until 8 hours of incubation, but was significantly higher, by 31%, than that of the control group at 16 hr of incubation. Microscopic findings of the 9th rib 3 weeks after fracture showed typical rimming of the osteoblast and immature bone formation in control and CTE groups. BMP-2 gene expression by in situ hybridization was remarkably increased by a CTE-supplemented diet in the fracture group compared to the control group. In conclusion, Carthamus tinctorius L. increased BMP-2 gene expression in human osteosarcoma cells and fractured bone. But further studies would be needed to elucidate the effect of CTE on fracture healing in vivo because our results did not show any evidence of healing improvement histologically $3^{rd}$ week after fracture.

A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL (지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구)

  • Lee, Eui-Seok;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Correction of a Wide Alveolar Cleft with Reverse L osteotomy and Liou Alveolar Distractor (역 L 형 절골술과 Liou 신연기를 이용한 넓은 치조열의 교정)

  • Lee, Myung Chul;Lew, Dae Hyun;Park, Beyoung Yun;Kwon, Soon Man
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.445-449
    • /
    • 2009
  • Purpose: A successful surgical treatment for a wide alveolar cleft with bone graft is difficult to achieve due to several factors such as the limitation of gingivoperiosteal flap, the presence of large scar tissues, and the poor blood circulation. To overcome these problems, alveolar distraction osteogenesis using Liou alveolar distraction device was applied. We analyzed the consequences of this surgical treatment. Method: Between 2006 January and 2007 August, we have conducted analysis on the methods and consequences of Liou alveolar distraction osteogenesis for 6 patients. The age of patients was 12 years and 6 months in average. The follow up period was 19 months in average. The Reverse L osteotomy followed by the placement of the Liou alveolar distraction device was performed. After serial distraction, the distractor was removed after 5 months of the process of osteogenesis, and the result was analyzed using the computed tomography and the x-ray films of the alveolar bone and the teeth. Results: The alveolar cleft with 12.5 mm in average width was filled with 8.5 mm of newly formed bone tissue in average width after 5 months of osteogenesis. Among the 6 cases, 5 required the additional bone graft and 1 case only required the gingivoperioplasty. The newly formed bone tissues did not show any signs of bone resorption. However, a considerable degree of teeth displacement was shown. Conclusion: For the alveolar cleft too wide to be reconstructed by a general bone graft, it is strongly recommended to perform the reverse L osteotomy of the cleft side with Liou alveolar distraction device to initiate the alveolar osteogenesis. However, the migrated teeth showed some degree of relapse, thus, the orthodontic treatment is essential following the distraction osteogenesis treatment.

Anterior Cranial Base Reconstruction with a Reverse Temporalis Muscle Flap and Calvarial Bone Graft

  • Kwon, Seung Gee;Kim, Yong Oock;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2012
  • Background Cranial base defects are challenging to reconstruct without serious complications. Although free tissue transfer has been used widely and efficiently, it still has the limitation of requiring a long operation time along with the burden of microanastomosis and donor site morbidity. We propose using a reverse temporalis muscle flap and calvarial bone graft as an alternative option to a free flap for anterior cranial base reconstruction. Methods Between April 2009 and February 2012, cranial base reconstructions using an autologous calvarial split bone graft combined with a reverse temporalis muscle flap were performed in five patients. Medical records were retrospectively analyzed and postoperative computed tomography scans, magnetic resonance imaging, and angiography findings were examined to evaluate graft survival and flap viability. Results The mean follow-up period was 11.8 months and the mean operation time for reconstruction was $8.4{\pm}3.36$ hours. The defects involved the anterior cranial base, including the orbital roof and the frontal and ethmoidal sinus. All reconstructions were successful. Viable flap vascularity and bone survival were observed. There were no serious complications except for acceptable donor site depressions, which were easily corrected with minor procedures. Conclusions The reverse temporalis muscle flap could provide sufficient bulkiness to fill dead space and sufficient vascularity to endure infection. The calvarial bone graft provides a rigid framework, which is critical for maintaining the cranial base structure. Combined anterior cranial base reconstruction with a reverse temporalis muscle flap and calvarial bone graft could be a viable alternative to free tissue transfer.

Effects of Musculoskeletal Transplant Foundation on Bone Formation in Human Fetal Osteoblasts (사람태아골모세포에 대한 근골격이식재의 골형성 유도에 관한 효과)

  • Park, Jae-young;Pi, Sung-Hee;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.449-459
    • /
    • 2006
  • DFDBA(Decalcified freeze-dried bone allograft) is one of the allograft materials for periodontal bone regeneration. DFDBA provides an osteoconductive surface and osteoinductive factors. Therefore, DFDBA have been used successfully to regenerate the attachment apparatus during periodontal treatment. But recent studies was reported that wide variations in commercial bone bank preparations of DFDBA do exist, including the ability to induce new bone formation. DFDBA was experimental materials that was recovered, processed, tested, shipped and invoiced through Musculoskeletal Transplant Foundation. MTF(Musculoskeletal Transplant Foundation) is the world largest, non-profit, AATB(American Association of Tissue Banks) accredited tissue bank. The objective of this study was to determine the effects of serial dilutions of a DFDBA on human fetal osteoblastic cell proliferation and their potential to form and mineralize bone nodules. Human fetal osteoblastic cell line(hFOB 1.19) was cultured with DMEM and SSE($1{\mu}g/m{\ell}$,$10{\mu}g/m{\ell}$, $100{\mu}g/m{\ell}$, $1mg/m{\ell}$) at $34^{\circ}C$ with 5% CO2 in 100% humidity. Cell proliferation was significantly increased at $1mg/m{\ell}$, $100{\mu}g$, $10{\mu}g/m{\ell}$, $1{\mu}g/m{\ell}$, $100ng/m{\ell}$, $10ng/m{\ell}$, $1ng/m{\ell}$ of DFDBA after 5 days incubation (p<0.05). Alkaline Phosphatase(ALP) level was significantly increased in $100ng/m{\ell}$, $10ng/m{\ell}$, $1ng/m{\ell}$ of DFDABA(p<0.05). A quantified calcium accumulation was significantly increased at $1ng/m{\ell}$, $10ng/m{\ell}$ of MTF(p<0.05). These results indicated that DFDBA has an inductive effect on bone formation in vitro.