• Title/Summary/Keyword: Human biomonitoring

Search Result 18, Processing Time 0.025 seconds

Korean research project on the integrated exposure assessment of hazardous substances for food safety

  • Lim, Ji-Ae;Kwon, Ho-Jang;Ha, Mina;Kim, Ho;Oh, Se Young;Kim, Jeong Seon;Lee, Sang-Ah;Park, Jung-Duck;Hong, Young-Seoub;Sohn, Seok-Joon;Pyo, Heesoo;Park, Kyung Su;Lee, Kwang-Geun;Kim, Yong Dae;Jun, Sangil;Hwang, Myung Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.4.1-4.11
    • /
    • 2015
  • Objectives: This survey was designed to conduct the first nationwide dietary exposure assessment on hazardous substances including the intakes of functional food and herbal medicine. In this paper, we introduced the survey design and the results of the dietary exposure status and internal exposure levels of lead (Pb), cadmium (Cd), and mercury (Hg). Methods: We selected 4867 subjects of all ages throughout Korea. We conducted a food survey, dietary survey, biomonitoring, and health survey. Results: Pb and Cd were the highest (median value) in the seaweed ($94.2{\mu}g/kg$ for Pb; $594{\mu}g/kg$ for Cd), and Hg was the highest in the fish ($46.4{\mu}g/kg$). The dietary exposure level (median value) of Pb was $0.14{\mu}g/kg$ body weight (bw)/d, $0.18{\mu}g/kg$ bw/d for Cd, and $0.07{\mu}g/kg$ bw/d for Hg. Those with a blood Pb level of less than $5.00{\mu}g/dL$ (US Centers for Disease Control and Prevention, reference value for those 1 to 5 years of age) were 99.0% of all the subjects. Those with a blood Cd level with less than $0.30{\mu}g/L$ (German Federal Environmental Agency, reference value for non-smoking children) were 24.5%. For those with a blood Hg level with less than $5.00{\mu}g/L$ (human biomonitoring I, references value for children and adults, German Federal Environmental Agency) was 81.0 % of all the subjects. Conclusions: The main dietary exposure of heavy metals occurs through food consumed in a large quantity and high frequency. The blood Hg level and dietary exposure level of Hg were both higher than those in the European Union.

A Critical Evaluation of DNA Adducts as Biological Markers for Human Exposure to Polycyclic Aromatic Compounds

  • Godschalk, Roger W.L.;Van Schooten, Frederik-Jan;Bartsch, Helmut
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention of chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria:i.adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined.iii. sources of inter- and intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAH-exposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with non-exposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intra-individual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurement may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. Biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurement as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.

Effect of storage time and temperature on levels of phthalate metabolites and bisphenol A in urine

  • Guo, Ying;Wang, Lei;Kannan, Kurunthachalam
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Urine is a widely used matrix in biomonitoring studies on the assessment of human exposure to environmental chemicals such as phthalate esters and bisphenol A (BPA). In addition to the need to apply valid analytical techniques, assurance of specimen integrity during collection and storage is an important prerequisite for the presentation of accurate and precise analytical data. One of the common issues encountered in the analysis of non-persistent contaminants is whether shipping and storage temperature and time since collection have an effect on sample integrity. In this study, we investigated the stability of phthalate metabolites and BPA in spiked and unspiked urine samples stored at room temperature ($20^{\circ}C$) or at $-80^{\circ}C$ for up to 8 weeks. Concentrations of phthalate metabolites declined, on average, by 3% to 15%, depending on the compounds, and BPA declined by ~30% after 4 weeks of storage of spiked urine samples at $20^{\circ}C$. In a test of 30 unspiked urine samples stored at $20^{\circ}C$ and at $-80^{\circ}C$ for 8 weeks, the concentrations of phthalate metabolites and BPA decreased by up to 15% to 44%, depending on the compound and on the samples. It was found that the small reduction in phthalate concentrations observed in urine, varied depending on the samples. In a few urine samples, concentrations of phthalate metabolites and BPA did not decline even after storage at $20^{\circ}C$ for 8 weeks. We found a significant relationship between concentrations of target analytes in urine stored at $20^{\circ}C$ and at $-80^{\circ}C$ for 8 weeks. We estimated the half-lives of phthalate metabolites and BPA in urine stored at $20^{\circ}C$. The estimated half-life of monoethyl phthalate (mEP) and mono (2-ethyl-5-carboxyphentyl) phthalate (mECPP) in urine stored at $20^{\circ}C$ was over two years, of mono (2-ethyl-5-oxohexyl) phthalate (mEOHP) and monobenzyl phthalate (mBzP) was approximately one year, and of other phthalate metabolites was approximately 6 months. The estimated half-life of BPA in urine stored at $20^{\circ}C$ was approximately 3 months, which is much longer than that reported for aquatic ecosystems.

Relationship between Bisphenol A Exposure and Obesity in Korean Adults from the Second Stage of KoNEHS (2012-2014) (한국 성인의 비스페놀 A 노출과 비만과의 관련성 연구: 제2기 국민환경보건기초조사(2012-2014))

  • Hwang, Moon-Young;Lee, Young-Mee;Jung, Soon-Won;Hong, Soo-Yeon;You, Ji-Yong;Park, Choong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.370-379
    • /
    • 2018
  • Objectives: Bisphenol A (BPA) has been extensively used in a variety of consumer products, resulting in widespread non-occupational human exposure. It is often detected in the human body. Studies have reported many health effects associated with endocrine and metabolic disruptions, including obesity, diabetes, hypertension, and cardiovascular diseases. This study was performed to explain the relationship between BPA exposure and obesity in the Korean adult population. Methods: The second stage of the Korean National Environmental Health Survey (KoNHES) was conducted from 2012 to 2014 with 6,478 persons participating. Using the results of the survey, we analyzed the exposure levels for BPA and the influence on obesity of BPA. Results: In model 1, the volume-based measure concentration of BPA, total, female and the 30s to 60s age group were positively related with BMI. In model 2, creatinine adjusted as a covariate and positive associations for BPA with BMI were observed in the female group and was marginally significantly associated in low body weight group. In model 3, creatinine adjusted (g/g-creatinine), BPA exposure, and BMI were positively related with sex, in females, and there was a marginally significant association with the low body weight group in the BMI categories. BMI was significantly associated with BPA in the female group in all three models. Conclusion: This study added further evidence that exposure to EDCs, include bisphenol A, is related with obesity among the general population. Given the environmental health concerns over BPA, it is necessary to develop comprehensive measures to reduce BPA exposure.

Determination of 4 Parabens in Human Urine by Online SPE and LC-MS/MS Techniques (온라인 고체상추출과 LC-MS/MS 기술을 이용한 소변 중 파라벤류 분석)

  • Kim, Jung Hoan;Kho, Young Lim;Kim, Pan Gyi;Jeong, Jee Yeon;Lee, Eun Hee;Lee, Seung-Youl;Nam, Hye-Seon;Rhee, Gyu-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.561-567
    • /
    • 2012
  • Objectives: Parabens are widely used as antimicrobial agents in pharmaceuticals and cosmetics as well as by the food industry. Parabens have been reported to show weak estrogenic activity and be related to health effects such as allergic reactions and skin and breast cancer. We evaluated an online solid phase extraction (SPE) method coupled with LC-MS/MS technique using free and conjugated parent parabens in human urine for assessing human exposure to parabens. Methods: We employed LC/MS/MS through online solid phase extraction and column-switching techniques and analyzed free and conjugated parabens as biomarkers of human exposure. Four major parabens, methyl-paraben (MP), ethyl-paraben (EP), propyl-paraben (PP) and butyl-paraben (BP), were analyzed. Method validation was performed by sensitivity, accuracy, precision and comparison of the results of online SPE with offline SPE. Results: The limits of detection (LOD) were in the range of 0.2-2 ng/mL, and actual limits of quantification (LOQ) were in the range of 0.7-6 ng/mL urine, depending upon the compound. Accuracy was in the range of 98.3-106.4%, and precision was in the range of 1.3-8.7% (CV) depending upon the compound. We found a good correlation between the results of analysis by online SPE method and that by off-line SPE method. Conclusions: The online SPE method showed proper LOD and validated accuracy, precision and good correlation with the offline method for analyzing parabens in urine.

Estimation of the Daily Human Intake of Acrylamide (AA) Based on Urinary N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and the Contribution of Dietary Habits in South Korean Adults (요중 AAMA에 의한 한국 성인 아크릴아마이드(AA)의 하루섭취량 추정 및 기여 식습관에 대한 분석)

  • LEE, Jin-Heon;LEE, Kee-Jae;KANG, Hee-Sook
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.4
    • /
    • pp.235-245
    • /
    • 2016
  • Objectives: This study estimated the adult Korean daily intake of acrylamide (AA) and investigated its relationship with demographic, lifestyle and dietary habits by using urinary concentrations of N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA). Methods: Human data (n=1870) was collected in a nationwide cross-sectional biomonitoring program representing the population (18-69 years) residing in South Korea. Urinary AAMA was analyzed with a LC-MS/MS system. Daily intakes of AA were estimated using mass daily AAMA, which was calculated through urinary AAMA concentration and daily creatinine excretion. Statistical analysis was performed with SAS procedures for calculating geometric means, confidence intervals and the exponentiated beta coefficient of multiple linear regressions. Results: Daily intake of AA was estimated at $0.475{\mu}g/kg$ body weight (BW) per day (95% confidence interval (CI): 0.447-0.503). In the case of current smokers, AA intake was $0.957{\mu}g/kg$ BW per day (95% CI: 0.847-1.067), which was significantly higher than that of former smokers and never smoked (p<0.0001). The strong affecting factors were age (95% CI: 0.68-1.14; p=0.0180), education level (95% CI: 1.05-1.42; p=0.0163), body mass index (BMI) (95% CI: 1.00-1.82; p<0.0001), and smoking status (95% CI: 0.97-3.05; p<0.0001). Korean dietary habits increasing AA intake were coffee (p=0.0005), cup noodles (p=0.0010) and canned foods (p=0.0005). Meanwhile, foods decreasing AA intake were fresh fruit (p=0.0076), cooked beef (p=0.0335) and cooked pork (p=0.0147). Conclusion: The Korean daily intake of AA in adults was estimated to be similar with those found in developed countries. The factors increasing daily AA intake were coffee, cup noodles and canned foods, and decreasing factors were fresh fruit, cooked beef and cooked pork.

Association between Soil Contamination and Blood Lead Exposure Level in Areas around Abandoned Metal Mines (폐금속광산지역 토양오염정도와 혈 중 납 노출 수준의 상관성)

  • Seo, Jeong-Wook;Park, Jung-Duck;Eom, Sang-Yong;Kwon, Hee-Won;Ock, Minsu;Lee, Jiho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.227-235
    • /
    • 2022
  • Background: Abandoned metal mines are classified as vulnerable areas with the highest level of soil contamination among risk regions. People living near abandoned metal mines are at increased risk of exposure to toxic metals. Objectives: This study aimed to evaluate the correlation between soil contamination levels in areas around abandoned metal mine and the blood lead levels of local residents. Moreover, we assess the possibility of using soil contamination levels as a predictive indicator for human exposure level. Methods: Data from the Survey of Residents around Abandoned Metal Mines (2013~2017, n=4,421) and Investigation of Soil Pollution in Abandoned Metal Mines (2000~2011) were used. A random coefficient model was conducted for estimation of the lower level (micro data) of the local resident unit and the upper level (macro data) of the abandoned metal mine unit. Through a fitted model, the variation of blood lead levels among abandoned metal mines was confirmed and the effect of the operationally defined soil contamination level was estimated. Results: Among the total variation in blood lead levels, the variation between abandoned mines was 18.6%, and the variation determined by the upper-level factors such as soil contamination and water contamination was 8.1%, which was statistically significant respectively. There was also a statistically significant difference in the least square mean of blood lead concentration according to the level of soil contamination (p=0.047, low: 2.32 ㎍/dL, middle: 2.38 ㎍/dL, high: 2.59 ㎍/dL). Conclusions: The blood lead concentration of residents living near abandoned metal mines was significantly correlated with the level of soil contamination. Therefore, in biomonitoring for vulnerable areas, operationally defined soil contamination can be used as a predictor for human exposure level to hazardous substances and discrimination of high-risk abandoned metal mines.

Development and Verification of a Simultaneous Analytical Method for Whole Blood Metals and Metalloids for Biomonitoring Programs (바이오모니터링 프로그램을 위한 혈중 금속류 동시분석법 개발 및 확인 평가)

  • Cha, Sangwon;Oh, Eunha;Oh, Selim;Han, Sang Beom;Im, Hosub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.64-77
    • /
    • 2021
  • Objective: Biological monitoring of trace elements in human blood samples has become an important indicator of the health environment. The purpose of this study was to detect and evaluate multiple metal items in blood samples based on ICP-MS, to perform comparative evaluation with the existing analysis method, and to develop and verify a new method. Methods: 100 μL of whole blood from 80 healthy subjects was used to analyze ten metals (Sb, tAs, Cd, Pb, Mn, Hg, Mo, Ni, Se, Tl) using ICP-MS. Verification of the analysis method included calculation of linearity, accuracy, precision and detection limits. In addition, a comparative test with the conventional graphite furnace atomic absorption spectroscopy (GF-AAS) method was performed. In the case of Pb, Cd, and Hg in whole blood, cross-analysis between Pb, Cd, and Hg analysis methods was performed to confirm the difference between the existing method and the new method (ICP-MS). Results: The coefficient of determination (R2) was 0.999 or higher in seven items and 0.995 or higher in three items. The Pb result showed that Pearson's correlation coefficient was very high at 0.983, and the intraclass correlation coefficient was 0.966. The Cd result showed that Pearson's correlation coefficient was 0.917 between the existing method and the new analysis concentration value. Its intraclass correlation coefficient was 0.960, and there was no significant difference between the two groups. Hg had a low correlation at 0.687, and the intraclass correlation coefficient was 0.761, which was lower than that of Pb and Cd. The intra-day and inter-day accuracy of Pd and Cd were satisfactory, but Hg did not meet the criteria for both accuracy and precision when compared with the conventional analysis method. Conclusion: This study can be meaningful in that it proposes a more efficient and feasible analysis method by verifying a blood heavy metal concentration experiment using multiple simultaneous analyses. All samples were processed and analyzed using the new ICP-MS. It was confirmed that the agreement between the two methods was very high, with the agreement between the current and new methods being 0.769 to 0.998. This study proposes an efficient simultaneous methodology capable of analyzing multiple elements with small samples. In the future, studies of various applications and the reliability of ICP-MS analysis methods are required, and research on the verification of accurate, precise, and continuous analysis methods is required.