• Title/Summary/Keyword: Human biological material

Search Result 152, Processing Time 0.028 seconds

Characterization of Structural Variations in the Context of 3D Chromatin Structure

  • Kim, Kyukwang;Eom, Junghyun;Jung, Inkyung
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.512-522
    • /
    • 2019
  • Chromosomes located in the nucleus form discrete units of genetic material composed of DNA and protein complexes. The genetic information is encoded in linear DNA sequences, but its interpretation requires an understanding of three-dimensional (3D) structure of the chromosome, in which distant DNA sequences can be juxtaposed by highly condensed chromatin packing in the space of nucleus to precisely control gene expression. Recent technological innovations in exploring higher-order chromatin structure have uncovered organizational principles of the 3D genome and its various biological implications. Very recently, it has been reported that large-scale genomic variations may disrupt higher-order chromatin organization and as a consequence, greatly contribute to disease-specific gene regulation for a range of human diseases. Here, we review recent developments in studying the effect of structural variation in gene regulation, and the detection and the interpretation of structural variations in the context of 3D chromatin structure.

Targeted Nanomedicine that Interacts with Host Biology

  • Ju, Jin-Myeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.81-81
    • /
    • 2017
  • Nanotechnology is of great importance to molecular biology and medicine because life processes are maintained by the action of a series of molecular nanomachines in the cell machinery. Recent advances in nanoscale materials that possess emergent physical properties and molecular organization hold great promise to impact human health in the diagnostic and therapeutic arenas. In order to be effective, nanomaterials need to navigate the host biology and traffic to relevant biological structures, such as diseased or pathogenic cells. Moreover, nanoparticles intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Inspired by nature, we use peptides to transfer biological trafficking properties to synthetic nanoparticles to achieve targeted delivery of payloads. In this talk, development of nanoscale materials will be presented with a particular focus on applications to three outstanding health problems: bacterial infection, cancer detection, and traumatic brain injury. A biodegradable nanoparticle carrying a peptide toxin trafficked to the bacterial surface has antimicrobial activity in a pneumonia model. Trafficking of a tumor-homing nanoprobes sensitively detects cancer via a high-contrast time-gated imaging system. A neuron-targeted nanoparticle carrying siRNA traffics to neuronal populations and silences genes in a model of traumatic brain injury. Unique combinations of material properties that can be achieved with nanomaterials provide new opportunities in translational nanomedicine. This framework for constructing nanomaterials that leverage bio-inspired molecules to traffic diagnostic and therapeutic payloads can contribute on better understanding of living systems to solve problems in human health.

  • PDF

Trace Element Analysis by Neutron Activastion Analysis in the Human Cancer Tissue (폐암조직에서 중성자 방사화 분석법을 이용한 미량 원소 분석)

  • Lim, Sang-Moo;Zo, Jae-Il;Shim, Young-Mog;Chung, Young-Ju;Cho, Seung-Yeon;Chung, Yong-Sam
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.104-111
    • /
    • 1993
  • Trace elements are important components in the biological system, as a structural material and metabolic controller. Neutron activation analysis (NAA) with high neutron flux and high energy resolution Ge (Li) detector coupled to multichannel analyzer (MCA) has been one of the most accurate method for the determination of ultra-trace level components, and is applicable to biological material. In human body, the NAA can be used for quantitation of trace elements in various organs and tissue with endocrinological and metabolic disease and industrial metal poisoning. In this study, Triga Mark III nuclear reactor in Korea Atomic Research Institute was used for quantitation of trace eleement in human lung cancer tissues by neutron activation analysis. In the squamous cell carcinoma tissues, Br, Hg, La, Sb, Sc, Cl, Fe and I content were lower than normal lung tissues, and K, Rb and Se content were higher. In the adenocarcinoma tissues, Fe, Au, La, Sc and Zn content were lower than normal lung tissues, and Rb, Co and Se content were higher. Rb content was higher in the adenocarcinoma tissues than in the squamous cell carcinoma tissues. Fe and Na content were higher in the squamous cell carcinoma tissues than in the adenocarcinoma tissues.

  • PDF

A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity (인두조직의 점 탄성특성의 수학적모델링에 관한 연구)

  • 김성민;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.495-502
    • /
    • 1998
  • A mathematical model of viscoelasticity on the material property of human pharyngeal tissue utilizing Y.C. Fung's Quasi-linear viscoelastic theory is proposed based on cyclic load, stress relaxation, incremental load, and uniaxial tensile load tests. The material properties are characterized and compared with other biological materials' results. The mathematical model is proposed by combining two characteristic functions determined from the stress relaxation and uniaxial tensile load tests. The reduced stress relaxation function G(t) and elastic response function S(t) are obtained from stress relaxation test and uniaxial tensile load test results respectively. Then the model describing stress-time history of the tissue is implemented utilizing two functions. The proposed model is evaluated and validated by comparing the model's cyclic behaviour with experimental results. The model data could be utilized as an important information for constructing 3-dimensional biomechanical model of human pharynx using FEM(Finite Element Method).

  • PDF

Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network (가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

Gene Therapy Vectors: A Current Research Insight (유전자치료를 위한 벡터 개발의 연구 동향)

  • Son, Eun-Hwa;Sohn, Eun-Soo;Pyo, Suhk-Neung
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.351-362
    • /
    • 2004
  • The basic concept underlying gene therapy is that human diseases may be treated by the transfer of genetics material into specific cells of a patient in order to correct or supplement defective genes responsible for disease development. There are several systems that can be used to transfer foreign genetic material into the human body. Both viral and non-viral vectors are developed and evaluated for delivering therapeutic genes. Viral vectors are biological systems derived from naturally evolved viruses capable of transferring their genetics materials into host cells. However, the limitations associated with viral vectors, in terms of their safety, particularly immunogenecity, and their limited capacity of transgenic materials, have encouraged researchers to increasingly focus on non-viral vectors as an alternative to viral vectors. Although non-viral vectors are less efficient than viral ones, they have the advantages of safety, simplicity of preparation and high gene encapsulation capability. This article reviews the most recent studies highlighting the advantages and the limitation of gene delivery systems focused on non-viral systems compared to viral systems.

A Study on Implementation of Human Centric Lighting Using Sunrise and Sunset Data (일출일몰 데이터를 이용한 인간 중심 조명 구현에 관한 연구)

  • Doowon Jang;Chunghyeok Kim;Gyuwon Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.486-493
    • /
    • 2024
  • Lighting has been used for a long time as a medium to convey brightness from darkness, and through incandescent lamps and fluorescent lamps, LED light sources have now become the standard in the lighting industry. Recently, the lighting equipment industry has been undergoing rapid digital transformation, starting with smart lighting, and is evolving into smart lighting customized for individuals and spaces through the development of IoT technology, cloud-based services, and data analysis. However, the blue light emitted from digital devices (computers, smartphones, tablets, etc.) or LED lights stimulates the melanopsin in the optic ganglion cells in the retina of the eye, which in turn stimulates the secretion of melatonin through the pineal gland, which regulates the secretion of melatonin. This can reduce sleep quality or disrupt biological rhythms. This interaction between blue light and melatonin has such a significant impact on human sleep patterns and overall health that it is essential to reduce exposure to blue light, especially in the evening. Human-centered lighting refers to lighting that takes into account the effects of light on the physical and mental areas, such as human activity and awakening, improvement of sleep quality, and health management. Many research institutes study the effects in the visible area and the non-visible area. By studying the impact, it is expected to improve the quality of human life. In this study, we plan to study ways to implement human-centered lighting by collecting sunrise and sunset data and linking commercialized LED packages and control devices with open-source hardware.

PAH regualtion of CYP1 gene in MCF-7 & ZR-75-1 human breast cancer cells

  • Min, Kyung-Nan;Kim, Ja-Young;Kang, So-Hee;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.182.2-183
    • /
    • 2003
  • Recent industrial society has human widely exposed to PAHs that are comming from the incomplete combustion of organic material as widerspread environmetal contaminants. Biological activities of PAHs are not known although PAHs are considered as carcinogens. The mechanism of action of PAHs has been studied extensively, however it is not clear how PAHs turn on CYP1A1 in human breast cancer. (omitted)

  • PDF

Biosynthesis of Polyunsaturated Fatty Acids: Metabolic Engineering in Plants (고도불포화지방산 생합성: 식물에서의 대사공학적 응용)

  • Kim, Sun-Hee;Kim, So-Yun;Kim, Jong-Bum;Roh, Kyung-Hee;Kim, Young-Mi;Park, Jong-Sug
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.93-102
    • /
    • 2009
  • Polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have significantly beneficial effects on health in relation to cardiovascular, immune, and inflammatory conditions and they are involved in determining the biophysical properties of membranes as well as being precursors for signaling molecules. PUFA biosynthesis is catalyzed by sequential desaturation and fatty acyl elongation reactions. This aerobic biosynthetic pathway was thought to be taxonomically conserved, but an alternative anaerobic pathway for the biosynthesis of PUFA is now known to contain analogous polyketide synthases (PKS). Certain fish oil can be a rich source of PUFA although processed marine oil is generally undesirable as food ingredients because of the associated objectionable flavors that are difficult and cost-prohibitive to remove. Oil-seed plants contain only the 18-carbon polyunsaturated fatty acid alpha-linolenic acid, which is not converted in the human body to EPA and DHA. It is now possible to engineer common oilseeds which can produce EPA and DHA and this has been the focus of a number of academic and industrial research groups. Recent advances and future prospects in the production of EPA and DHA in oilseed crops are discussed here.

PAHs regulation of CYP1A gene in MCF-7 and ZR-75-1 human breast cancer cells.

  • Kim, J.Y.;Min, K.N.;Sheen, Y.Y.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.65-65
    • /
    • 2003
  • INTRODUCTION: Recent industrial society has widely exposed to PAHs that are coming from the incomplete combustion of organic material as widespread environmental contaminants. Biological activities of PAHs are not known although PAHs are considered as carcinogens. (omitted)

  • PDF