• Title/Summary/Keyword: Human behavior classification

Search Result 79, Processing Time 0.025 seconds

Behavior-classification of Human Using Fuzzy-classifier (퍼지분류기를 이용한 인간의 행동분류)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2314-2318
    • /
    • 2010
  • For human-robot interaction, a robot should recognize the meaning of human behavior. In the case of static behavior such as face expression and sign language, the information contained in a single image is sufficient to deliver the meaning to the robot. In the case of dynamic behavior such as gestures, however, the information of sequential images is required. This paper proposes behavior classification by using fuzzy classifier to deliver the meaning of dynamic behavior to the robot. The proposed method extracts feature points from input images by a skeleton model, generates a vector space from a differential image of the extracted feature points, and uses this information as the learning data for fuzzy classifier. Finally, we show the effectiveness and the feasibility of the proposed method through experiments.

Spatiotemporal Patched Frames for Human Abnormal Behavior Classification in Low-Light Environment (저조도 환경 감시 영상에서 시공간 패치 프레임을 이용한 이상행동 분류)

  • Widia A. Samosir;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.634-636
    • /
    • 2023
  • Surveillance systems play a pivotal role in ensuring the safety and security of various environments, including public spaces, critical infrastructure, and private properties. However, detecting abnormal human behavior in lowlight conditions is a critical yet challenging task due to the inherent limitations of visual data acquisition in such scenarios. This paper introduces a spatiotemporal framework designed to address the unique challenges posed by low-light environments, enhancing the accuracy and efficiency of human abnormality detection in surveillance camera systems. We proposed the pre-processing using lightweight exposure correction, patched frames pose estimation, and optical flow to extract the human behavior flow through t-seconds of frames. After that, we train the estimated-action-flow into autoencoder for abnormal behavior classification to get normal loss as metrics decision for normal/abnormal behavior.

Character Analysis Method based on the Value Type of the Human (인간 가치 유형에 기반한 캐릭터 분석 방법론 제안)

  • Song, Minho
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.650-660
    • /
    • 2017
  • This study is to suggest a new method of analyzing personality types of characters in narrative. First, we examined the history of the taxonomy of character types that existed in narrative theories so far. Until now, the classification of character types in narrative theory consisted largely of a formal classification based on roles in narrative, a content classification based on human internal qualities, and a complementary classification in which the two classification criteria are united. The problem with the existing character classification type is difficult to categorize it in spite of the usefulness of the content classification based on human internal qualities. On the other hand, the classification based on the role of the character in the narrative does not help as much as a practical analysis methodology because the classification is formal. In this study, we try to solve this problem by introducing Shalom Schwartz's human value type, and to make human character's value type and human role correlated with each other as a new character analysis methodology. Schwartz's study of value type is a very effective method to grasp the motivation of human behavior, and it seems to be very meaningful in analyzing the directivity of characters.

Reinterpretation of Behavior for Non-compliance with Procedures : Focusing on the Events at a Domestic Nuclear Power Plants (절차 미준수 행동의 재해석 : 국내 원전 사건을 중심으로)

  • Dong Jin Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.82-95
    • /
    • 2024
  • Analyzing the aftermath of events at domestic nuclear power plants brings in the question: "Why do workers not comply with the prescribed procedures?" The current investigation of nuclear power plant events identifies their reasons considering the factors affecting the workers' behaviors. However, there are some complications to it: in addition to confirming the action such as an error or a violation, there is a limit to identifying the intention of the actor. To overcome this limitation, the study analyzed and examined the reasons for non-compliance identified in nuclear power plant events by Reason's rule-related behavior classification. For behavior analysis, I selected unit behaviors for events that are related to human and organizational factors and occurred at domestic nuclear power plants since 2017, and then I applied the rule-related behavior classification introduced by Reason (2008). This allowed me to identify the intentions by classifying unit behaviors according to quality and compliance with the rules. I also identified the factors that influenced unit behaviors. The analysis showed that most often, non-compliance only pursued personal goals and was based on inadequate risk appraisal. On the other hand, the analysis identified cases where it was caused by such factors as poorly written procedures or human system interfaces. Therefore, the probability of non-compliance can be reduced if these factors are properly addressed. Unlike event investigation techniques that struggle to identify the reasons for employee behavior, this study provides a new interpretation of non-compliance in nuclear power plant events by examining workers' intentions based on the concept of rule-related behavior classification.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

A Framework for Designing Closed-loop Hand Gesture Interface Incorporating Compatibility between Human and Monocular Device

  • Lee, Hyun-Soo;Kim, Sang-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.533-540
    • /
    • 2012
  • Objective: This paper targets a framework of a hand gesture based interface design. Background: While a modeling of contact-based interfaces has focused on users' ergonomic interface designs and real-time technologies, an implementation of a contactless interface needs error-free classifications as an essential prior condition. These trends made many research studies concentrate on the designs of feature vectors, learning models and their tests. Even though there have been remarkable advances in this field, the ignorance of ergonomics and users' cognitions result in several problems including a user's uneasy behaviors. Method: In order to incorporate compatibilities considering users' comfortable behaviors and device's classification abilities simultaneously, classification-oriented gestures are extracted using the suggested human-hand model and closed-loop classification procedures. Out of the extracted gestures, the compatibility-oriented gestures are acquired though human's ergonomic and cognitive experiments. Then, the obtained hand gestures are converted into a series of hand behaviors - Handycon - which is mapped into several functions in a mobile device. Results: This Handycon model guarantees users' easy behavior and helps fast understandings as well as the high classification rate. Conclusion and Application: The suggested framework contributes to develop a hand gesture-based contactless interface model considering compatibilities between human and device. The suggested procedures can be applied effectively into other contactless interface designs.

A Study on the Analysis of Human-errors in Major Chemical Accidents in Korea (국내 화학사고의 휴먼에러 기반 분석에 관한 연구)

  • Park, Jungchul;Baek, Jong-Bae;Lee, Jun-won;Lee, Jin-woo;Yang, Seung-hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • This study analyses the types, related operations, facilities, and causes of chemical accidents in Korea based on the RISCAD classification taxonomy. In addition, human error analysis was carried out employing different human error classification criteria. Explosion and fire were major accident types, and nearly half of the accidents occurred during maintenance operation. In terms of related facility, storage devices and separators were the two most frequently involved ones. Results of the human error-based analysis showed that latent human errors in management level are involved in many accidents as well as active errors in the field level. Action errors related to unsafe behavior leads to accidents more often compared with the checking behavior. In particular, actions missed and inappropriate actions were major problems among the unsafe behaviors, which implicates that the compliance with the work procedure should be emphasized through education/training for the workers and the establishment of safety culture. According to the analysis of the causes of the human error, the frequency of skill-based mistakes leading to accidents were significantly lower than that of rule-based and knowledge based mistakes. However, there was limitation in the analysis of the root causes due to limited information in the accident investigation report. To solve this, it is suggested to adopt advanced accident investigation system including the establishment of independent organization and improvement in regulation.

Development of an Algorithm for Wearable sensor-based Situation Awareness Recognition System for Mariners (해양사고 절감을 위한 웨어러블 센서 기반 항해사 상황인지 인식 기법 개발)

  • Hwang, Taewoong;Youn, Ik-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.395-397
    • /
    • 2019
  • Despite technical advance, human error is the main reason for maritime accidents. To ensure a safety of maritime transporting environment, technical and methodological improvement to react to various types of maritime accidents should be developed instead of ambiguously anticipating maritime accidents due to human errors. Survey, questionnaires, and interview have been routinely applied to understand objective human lookout pattern differences in various navigational situations. Although the descriptive methodology helps systematically categorizing different patterns of human behavior to avoid accidents, the subjective methods limit to objectively recognize physical behavior patterns during navigation. The purpose of the study is to develop an objective lookout pattern detection system using wearable sensors in the simulated navigation environment. In the simulated maritime navigation environment, each participant performed a given navigational situation by wearing the wearable sensors on the wrist, trunk, and head. Activity classification algorithm that was developed in the previous navigation activity classification research was applied. The physical lookout behavior patterns before and after situation-aware showed distinctive patterns, and the results are expected to reduce human errors of navigators.

  • PDF