• Title/Summary/Keyword: Human Visual Perception

Search Result 264, Processing Time 0.026 seconds

A Study on Visual Perception based Emotion Recognition using Body-Activity Posture (사용자 행동 자세를 이용한 시각계 기반의 감정 인식 연구)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.305-314
    • /
    • 2011
  • Research into the visual perception of human emotion to recognize an intention has traditionally focused on emotions of facial expression. Recently researchers have turned to the more challenging field of emotional expressions through body posture or activity. Proposed work approaches recognition of basic emotional categories from body postures using neural model applied visual perception of neurophysiology. In keeping with information processing models of the visual cortex, this work constructs a biologically plausible hierarchy of neural detectors, which can discriminate 6 basic emotional states from static views of associated body postures of activity. The proposed model, which is tolerant to parameter variations, presents its possibility by evaluating against human test subjects on a set of body postures of activities.

Object Motion Detection and Tracking Based on Human Perception System (인간의 지각적인 시스템을 기반으로 한 연속된 영상 내에서의 움직임 영역 결정 및 추적)

  • 정미영;최석림
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2120-2123
    • /
    • 2003
  • This paper presents the moving object detection and tracking algorithm using edge information base on human perceptual system The human visual system recognizes shapes and objects easily and rapidly. It's believed that perceptual organization plays on important role in human perception. It presents edge model(GCS) base on extracted feature by perceptual organization principal and extract edge information by definition of the edge model. Through such human perception system I have introduced the technique in which the computers would recognize the moving object from the edge information just like humans would recognize the moving object precisely.

  • PDF

A Study on Representation Techniques of Visual Tactility in the Surface of Contemporary Architectutre (현대건축의 표면에 나타난 시각적 촉각의 표현기법에 관한 연구)

  • Jeon, You-Chang;Kim, Sung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.139-147
    • /
    • 2008
  • Modern architecture's optical mechanism focused on Ocuularcentrism neglects the tactility of vision and tends to eliminate the optical and tactile dualism of traditional spaces by representing spaces and surfaces that are abstract and cold-hearted. In other words, all sensory experiences, except for visual experiences, are eliminated to make it impossible to create the substantial core of architecture that combines time, image, and surface textures. The fast-changing social trends, the emergence of new materials and technologies, and the corresponding development of various types of media since the Industrial Revolution have changed the paradigm of human perception and representation. With the development of media, other sensory experiences besides visual experience have been stressed and human perception has converted from single perspective to complex perspective. In result, new sensory items, such as visual tactility, have replaced the traditional vision-centered hierarchy. The composition of architectural surfaces has represented the functional and commercial needs of technology, structure, as well as the socio-cultural needs of the community. In contemporary times, it is being changed and developed by the new tactility and the corresponding expression of modern architecture. Based on the visual representation of tactility of architectural surface, this study used a composition of surface that combines various events, meanings, and senses to examine how architecture can mediate and reproduce viewers' visual experiences and discover the existential relationship between architecture and men.

Near-body Interaction Enhancement with Distance Perception Matching in Immersive Virtual Environment

  • Yang, Ungyeon;Kim, Nam-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2021
  • As recent virtual reality technologies provide a more natural three-dimensional interactive environment, users naturally learn to explore space and interact with synthetic objects. The virtual reality researcher develops a technique that realizes realistic sensory feedback to get appropriate feedback to sense input behavior. Although much recent virtual reality research works extensively consider the human factor, it is not easy to adapt to all new virtual environment contents. Among many human factors, distance perception has been treated as very important in virtual environment interaction accuracy. We study the experiential virtual environment with the feature of the virtual object connected with the real object. We divide the three-dimensional interaction, in which distance perception and behavior have a significant influence, into two types (whole-body movement and direct manipulation) and analyze the real and virtual visual distance perception heterogeneity phenomenon. Also, we propose a statistical correction method that can reduce a near-body movement and manipulation error when changing the interaction location and report the experiment results proving its effectiveness.

Visual Perception of Garment Surface Appearance

  • Fan, Jintu;Liu, Fu
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • This paper concerns with the relationship between the visual perception of the degree of pucker or wrinkles of garment surfaces and the geometrical parameters of surfaces. In this study, four potentially relevant parameters of the surface profile are considered, namely, the variance ($\sigma$$^2$), the cutting frequency (F$\_$c/), the effective disparity curvature (D$\_$ce/) (Defined as the average disparity curvature of the wrinkled surface over the eyeball distance of the observer) and the frequency component of the disparity curvature ( D$\_$cf/). Based on the experiments using garment seams having varying degree of pucker (i.e. the wrinkles along a seam line), it was found that, while the logarithm of each of these four parameters has a strong linear relationship with the visually perceived degree of wrinkles, following the Web-Fetchner Law, the effective disparity curvature ( D$\_$ce/) and the frequency component of the disparity curvature (D$\_$cf/) appeared to have stronger relationships with the visual perception. This finding is in agreement with the suggestion by Rogers '||'&'||' Cagenello that human visual system may compute the disparity curvature in discriminating curved surfaces. It also suggested an objective method of measuring the degree of surface wrinkles.

  • PDF

Novel Measurement Method for Evaluating Moving Picture Quality of Display

  • Kim, Jae-Shin;Chong, Jong-Ho;Kim, Sang-Ho;Kim, Gun-Shik;Bae, Jae-Woo;Lee, Seung-Bae;Oh, Jun-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1039-1042
    • /
    • 2008
  • We propose a novel method to measure moving picture quality of display. This method simulates human visual system based on CSF (Contrast Sensitivity Function). And it evaluates moving picture quality of display on the image captured by pursuit camera. The results from this method are correlated with human visual perception test very well.

  • PDF

An Image Quality Assessment Scheme based on HVS using Gabor Function

  • Eom Minyoung;Choe Yoonsik
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.128-132
    • /
    • 2004
  • In this paper, we propose a new image quality assessment scheme considering the human visual perception characteristics. A subjective quality assessment is obtained by the response of the receptive field in the primary visual cortex and a human's eye can't focus on all of the visual range in a moment. Take advantage of two facts above, we apply Gabor wavelet transform, which is well fit the receptive field in the cortex, to divided constant sized subblocks. Then a local distortion of the subblocks and a global distortion for the entire image are calculated in order. The proposed method has been evaluated using video test sequences provided by the Video Quality Experts Group (VQEG). The experimental results show that good correlation with human perception is obtained using the proposed metric, which is what we called GPSNR.

  • PDF

A Bio-Inspired Modeling of Visual Information Processing for Action Recognition (생체 기반 시각정보처리 동작인식 모델링)

  • Kim, JinOk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.299-308
    • /
    • 2014
  • Various literatures related computing of information processing have been recently shown the researches inspired from the remarkably excellent human capabilities which recognize and categorize very complex visual patterns such as body motions and facial expressions. Applied from human's outstanding ability of perception, the classification function of visual sequences without context information is specially crucial task for computer vision to understand both the coding and the retrieval of spatio-temporal patterns. This paper presents a biological process based action recognition model of computer vision, which is inspired from visual information processing of human brain for action recognition of visual sequences. Proposed model employs the structure of neural fields of bio-inspired visual perception on detecting motion sequences and discriminating visual patterns in human brain. Experimental results show that proposed recognition model takes not only into account several biological properties of visual information processing, but also is tolerant of time-warping. Furthermore, the model allows robust temporal evolution of classification compared to researches of action recognition. Presented model contributes to implement bio-inspired visual processing system such as intelligent robot agent, etc.

INFLUENCE OF PROVIDING BODY SENSORY INFORMATION AND VISUAL INFORMATION TO DRIVER ON STEER CHARACTERISTICS AND AMOUNT OF PERSPIRATION IN DRIFT CORNERING

  • NOZAKI H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Driving simulations were performed to evaluate the effect of providing both visual information and body sensory information on changes in steering characteristics and the amount of perspiration in drift cornering. When the driver is provided with body sensory information and visual information, the amount of perspiration increases and the driver can perform drift control with a moderate level of tension. With visual information only, the driver tends to easily go into a spin because drift control is difficult. In this case, the amount of perspiration increases greatly as compared with the case where body sensory information is also provided, reflecting a very high perception of risk. When body sensory information is provided, the driver can control drift adequately, feeding back the roll angle information in steering. The importance of the driver's perception of the state of the vehicle was thus confirmed, and a desirable future direction for driver assistance systems was determined.

Implementation of the Perception Process in Human‐Vehicle Interactive Models(HVIMs) Considering the Effects of Auditory Peripheral Cues (청각 주변 자극의 효과를 고려한 효율적 차량-운전자 상호 연동 모델 구현 방법론)

  • Rah, Chong-Kwan;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • HVIMs consists of simulated driver models implemented with series of mathematical functions and computerized vehicle dynamic models. To effectively model the perception process, as a part of driver models, psychophysical nonlinearity should be considered not only for the single-modal stimulus but for the stimulus of multiple modalities and interactions among them. A series of human factors experiments were conducted using the primary sensory of visual and auditory modalities to find out the effects of auditory cues in visual velocity estimation tasks. The variations of auditory cues were found to enhance/reduce the perceived intensity of velocity as the level changed. These results indicate that the conventional psychophysical power functions could not applied for the perception process of the HVIMs with multi-modal stimuli. 'Ruled surfaces' in a 3-D coordinate system(with the intensities of both kinds of stimuli and the ratio of enhancement, respectively for each coordinate) were suggested to model the realistic perception process of multi-modal HVIMs.