• 제목/요약/키워드: Human Umbilical Vein Endothelial Cells

검색결과 248건 처리시간 0.04초

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng;Liu, Yu;Li, Xinxin;Cao, Ling;Yuan, Xiaolong;Li, Wenhui;Cao, Qianqian
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.132-139
    • /
    • 2016
  • The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

  • Kim, Mi-Kyoung;Park, Hyun-Joo;Kim, Su-Ryun;Choi, Yoon Kyung;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.327-334
    • /
    • 2015
  • The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin- A-induced angiogenesis in vivo and ex vivo. Orexin-A-stimulated endothelial tube formation and chemotactic activity were also blocked in SnPP-treated vascular endothelial cells. Orexin-A treatment increased the expression of nuclear factor erythroid-derived 2 related factor 2 (Nrf2), and antioxidant response element (ARE) luciferase activity, leading to induction of HO-1. Collectively, these findings indicate that HO-1 plays a role as an important mediator of orexin-A-induced angiogenesis, and provide new possibilities for therapeutic approaches in pathophysiological conditions associated with angiogenesis.

Monoclonal Antibody to CD9 Inhibits Platelet-induced Human Endothelial Cell Proliferation

  • Ko, Eun-Mi;Lee, In Yong;Cheon, In Su;Kim, Jinkoo;Choi, Jin-Suk;Hwang, Jong Yun;Cho, Jun Sik;Lee, Dong Heon;Kang, Dongmin;Kim, Sang-Hyun;Choe, Jongseon
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.70-77
    • /
    • 2006
  • Platelets are anucleate cytoplasmic fragments derived from bone marrow megakaryocytes, and endothelial cells constitute the barrier between bloodstream and adjacent tissues. Although platelets are thought to regulate the biological functions of endothelial cells, the molecular mechanisms involved are poorly understood. With human umbilical vein endothelial cells and freshly isolated platelets, we established an in vitro model of platelet-induced endothelial cell proliferation. Platelets stimulated endothelial cell proliferation in a dose-dependent manner and transwell experiments with semi-permeable membranes suggested that direct cell-to-cell contacts were required. We developed mAbs against platelets and selected a mAb that blocks their proliferative effect. We purified the antigen by immunoprecipitation and identified it by Q-TOF MS analysis as the tetraspanin CD9. Since both platelets and endothelial cells expressed CD9 strongly on their surfaces we carried out a pre-treatment experiment that showed that CD9 molecules on the endothelial cells participate in the mitogenic effect of the platelets. The inhibitory effect of our mAb was comparable to that of a well-known functional anti-CD9 mAb. These results suggest that the tetraspanin CD9 plays an important role in endothelial regeneration.

혈관내피세포에서 TNF-$\alpha$ 자극에 의해 유도되는 혈관염증에 대한 WK-38의 억제 효과 (Inhibitory Effect of WK-38 on TNF-$\alpha$ Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells)

  • 황선미;이윤정;김은주;윤정주;이혁;강대길;이호섭
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.1132-1138
    • /
    • 2009
  • Vascular inflammation is an important event in the development of vascular diseases such as tumor progression and atherosclerosis. This study was to investigate the inhibitory effects of WK-38, a new herbal prescription for the treatment of atherosclerosis, on vascular inflammation in human umbilical vein endothelial cells (HUVEC). WK-38 is composed of Rhei Rhizoma, Magonoliae Cortex, Moutan Cortez Radicis. Pretreatment with WK-38 was significantly blocked TNF-$\alpha$-induced expression level of cell adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial cell selectin (E-selectin) in a dose-dependent manner. TNF-$\alpha$-induced cell adhesion in co-cultured U937 and HUVEC was also blocked by pretreatment with WK-38. Moreover, WK-38 significantly suppressed p65 NF-${\kappa}B$ translocation into the nucleus by TNF-$\alpha$ as well as the phosphorylation and degradation of $I{\kappa}B-{\alpha}$. In conclusion, the present data suggested that WK-38 could suppress TNF-$\alpha$-induced vascular inflammatory process, though inhibition of NF-${\kappa}B$ activation in HUVEC.

Clathrin and Lipid Raft-dependent Internalization of Porphyromonas gingivalis in Endothelial Cells

  • Kim, Sang-Yong;Kim, So-Hee;Choi, Eun-Kyoung;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제39권3호
    • /
    • pp.131-136
    • /
    • 2014
  • Porphyromonas gingivalis is one of the most important periodontal pathogens and has been to known to invade various types of cells, including endothelial cells. The present study investigated the mechanisms involved in the internalization of P. gingivalis in human umbilical vein endothelial cells (HUVEC). P. gingivalis internalization was reduced by clathrin and lipid raft inhibitors, as well as a siRNA knockdown of caveolin-1, a principal molecule of lipid raft-related caveolae. The internalization was also reduced by perturbation of actin rearrangement, while microtubule polymerization was not required. Furthermore, we found that Src kinases are critical for the internalization of P. gingivalis into HUVEC, while neither Rho family GTPases nor phosphatidylinositol 3-kinase are required. Taken together, this study indicated that P. gingivalis internalization into endothelial cells involves clathrin and lipid rafts and requires actin rearrangement associated with Src kinase activation.

Culture of Endothelial Cells by Transfection with Plasmid Harboring Vascular Endothelial Growth Factor

  • Chang, Sungjaae;Sohn, Insook;Park, Inchul;Sohn, Youngsook;Hong, Seokil;Choe, Teaboo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권2호
    • /
    • pp.106-109
    • /
    • 2000
  • Vascular endothelial cells (EGs) are usually difficult to culture to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement(ECGS). The expression of VEGF by HUVEC tansfected with Vegf GENE was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS. However, when the culture medium was supplied with 2.5 ng/ml of basic fibroblast growth factor (bFGF), a synergistic effect effect of VEGE and bFGF was observed. In this case, the final cell density was recovered was recovered up to about 78% of maxium value.

  • PDF

Allicin reduces expression of Intercellular Adhesion Molecule-1 (ICAM-1) in gamma-irradiated endothelial cells: Involvement of p38 MAP kinase signalling pathway.

  • Son, Eun-Hwa;Mo, Sung-Ji;Cho, Seong-Jun;Yang, Kwang-Hee;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.307.1-307.1
    • /
    • 2002
  • Inflammation is a frequent radiation-induced following therapeutic irradiation. Since the upregulation of adhesion molecules on endothelial cell surface has been known to be associated with inflammation. interfering with the expression of adhesion molecules is an important therapeutic target. We examined the effect of allicin. a major component of garlic. on the induction of intercellular adhesion molecule-1 (lCAM-1) by gamma-irradiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). (omitted)

  • PDF

Culture of Human Umbilical Vein Endothlial Cells Using 96-well Microplates and Position Effects on Cell Growth

  • Lee, Soohyun;Insook Sohn;Park, Myungjin;Park, Inchul;Youngsook Sohn;Seokil Hong;Taeboo Choe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권3호
    • /
    • pp.207-210
    • /
    • 2000
  • When endothelial cells isolated isolated from human umbilical venis were cultred for 6dary using 96-well microplates, the final cell density in each was fiund not to be the same although the medium composition of each well was exactly the same. Cell growth in the wells located at the periphery of a microplate was low, while that in the central area of the plate was high. A possible cause for different rate of growth was proposed as the uneven concentration of oxygen in the culture medium of each well.

  • PDF

Vitexin, an HIF-1α Inhibitor, Has Anti-metastatic Potential in PC12 Cells

  • Choi, Hwa Jung;Eun, Jae Soon;Kim, Bang Geul;Kim, Sun Yeou;Jeon, Hoon;Soh, Yunjo
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.291-299
    • /
    • 2006
  • Vitexin, a natural flavonoid compound identified as apigenin-8-C-${\beta}$-D-glucopyranoside, has been reported to exhibit antioxidative and anti-inflammatory properties. In this study, we investigated its effect on hypoxiainducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) in rat pheochromacytoma (PC12), human osteosarcoma (HOS) and human hepatoma (HepG2) cells. Vitexin inhibited HIF-$1{\alpha}$ in PC12 cells, but not in HOS or HepG2 cells. In addition, it diminished the mRNA levels of hypoxia-inducible genes such as vascular endothelial growth factor (VEGF), smad3, aldolase A, enolase 1, and collagen type III in the PC12 cells. We found that vitexin inhibited the migration of PC12 cells as well as their invasion rates, and it also inhibited tube formation by human umbilical vein endothelium cells (HUVECs). Interestingly, vitexin inhibited the hypoxia-induced activation of c-jun N-terminal kinase (JNK), but not of extracellular-signal regulated protein kinase (ERK), implying that it acts in part via the JNK pathway. Overall, these results suggest the potential use of vitexin as a treatment for diseases such as cancer.