Monoclonal Antibody to CD9 Inhibits Platelet-induced Human Endothelial Cell Proliferation

  • Ko, Eun-Mi (Department of Microbiology and Immunology, Kangwon National University School of Medicine) ;
  • Lee, In Yong (Department of Microbiology and Immunology, Kangwon National University School of Medicine) ;
  • Cheon, In Su (Department of Microbiology and Immunology, Kangwon National University School of Medicine) ;
  • Kim, Jinkoo (Department of Microbiology and Immunology, Kangwon National University School of Medicine) ;
  • Choi, Jin-Suk (Department of Microbiology and Immunology, Kangwon National University School of Medicine) ;
  • Hwang, Jong Yun (Department of Obstetrics and Gynecology, Kangwon National University School of Medicine) ;
  • Cho, Jun Sik (Department of Obstetrics and Gynecology, Kangwon National University School of Medicine) ;
  • Lee, Dong Heon (Department of Obstetrics and Gynecology, Kangwon National University School of Medicine) ;
  • Kang, Dongmin (Korea Basic Science Institute Chunchon Center) ;
  • Kim, Sang-Hyun (Department of Microbiology and Immunology, Kangwon National University School of Medicine) ;
  • Choe, Jongseon (Department of Microbiology and Immunology, Kangwon National University School of Medicine)
  • Received : 2006.04.01
  • Accepted : 2006.05.17
  • Published : 2006.08.31

Abstract

Platelets are anucleate cytoplasmic fragments derived from bone marrow megakaryocytes, and endothelial cells constitute the barrier between bloodstream and adjacent tissues. Although platelets are thought to regulate the biological functions of endothelial cells, the molecular mechanisms involved are poorly understood. With human umbilical vein endothelial cells and freshly isolated platelets, we established an in vitro model of platelet-induced endothelial cell proliferation. Platelets stimulated endothelial cell proliferation in a dose-dependent manner and transwell experiments with semi-permeable membranes suggested that direct cell-to-cell contacts were required. We developed mAbs against platelets and selected a mAb that blocks their proliferative effect. We purified the antigen by immunoprecipitation and identified it by Q-TOF MS analysis as the tetraspanin CD9. Since both platelets and endothelial cells expressed CD9 strongly on their surfaces we carried out a pre-treatment experiment that showed that CD9 molecules on the endothelial cells participate in the mitogenic effect of the platelets. The inhibitory effect of our mAb was comparable to that of a well-known functional anti-CD9 mAb. These results suggest that the tetraspanin CD9 plays an important role in endothelial regeneration.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Anitua, E., Andia, I., Sanchez, M., Azofra, J., del Mar Zalduendo, M., et al. (2005) Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J. Orthop. Res. 23, 281−286 https://doi.org/10.1016/j.orthres.2004.08.015
  2. Bernatchez, P. N., Soker, S., and Sirois, M. G. (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J. Biol. Chem. 274, 31047−31054 https://doi.org/10.1074/jbc.274.43.31047
  3. Boucheix, C., Soria, C., Mirshahi, M., Soria, J., Perrot, J. Y., et al. (1983) Characteristics of platelet aggregation induced by the monoclonal antibody ALB6 (acute lymphoblastic leukemia antigen p 24). Inhibition of aggregation by ALB6Fab. FEBS Lett. 161, 289−295
  4. Cariappa, A., Shoham, T., Liu, H., Levy, S., Boucheix, C., et al. (2005) The CD9 tetraspanin is not required for the development of peripheral B cells or for humoral immunity. J. Immunol. 175, 2925−2930
  5. Cha, J.-K., Jeong, M.-H., Bae, H.-R., Han, J.-Y., Jeong, S.-J., et al. (2000) Activated platelets induce secretion of interleukin-1b, monocyte chemotactic protein-1, and macrophage inflammatory protein-1a and surface expression of intercellular adhesion molecule-1 on cultured endothelial cells. J. Korean Med. Sci. 15, 273−278
  6. Chung, J. and Mercurio, A. M. (2004) Contributions of the $\alpha$6 integrins to breast carcinoma survival and progression. Mol. Cells 17, 203−209
  7. Danese, S., Katz, J. A., Saibeni, S., Papa, A., Gasbarrini, A., et al. (2003) Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients. Gut 52, 1435−1441 https://doi.org/10.1136/gut.52.10.1435
  8. Eppley, B. L., Woodell, J. E., and Higgins, J. (2004) Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast. Reconstr. Surg. 114, 1502−1508
  9. Falke, P., Mattiasson, I., and Stavenow, L. (1993) Effects of platelets from men with risk factors for atherosclerosis on endothelial cell proliferation and prostacyclin production in vitro. Scand. J. Clin. Lab. Invest. 53, 297−303
  10. Frechette, J. P., Martineau, I., and Gagnon, G. (2005) Plateletrich plasmas: growth factor content and roles in wound healing. J. Dent. Res. 84, 434−439 https://doi.org/10.1177/154405910508400507
  11. Henn, V., Slupsky, J. R., Grafe, M., Anagnostopoulos, K., Forster, R., et al. (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591−594
  12. Higashihara, M., Takahata, K., Yatomi, Y., Nakahara, K., and Kurokawa, K. (1990) Purification and partial characterization of CD9 antigen of human platelets. FEBS Lett. 264, 270−274
  13. Inngjerdingen, M., Waterhouse, K., and Solum, N. O. (1999) Studies on the dual effects on platelets of a monoclonal antibody to CD9, and on the properties of platelet CD9. Thromb. Res. 95, 215−227 https://doi.org/10.1016/S0049-3848(99)00035-3
  14. Inui, S., Higashiyama, S., Hashimoto, K., Higashiyama, M., Yoshikawa, K., et al. (1997) Possible role of coexpression of CD9 with membrane-anchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth. J. Cell Physiol. 171, 291−298 https://doi.org/10.1002/(SICI)1097-4652(199706)171:3<291::AID-JCP7>3.0.CO;2-J
  15. Kaprielian, Z., Cho, K. O., Hadjiargyrou, M., and Patterson, P. H. (1995) CD9, a major platelet cell surface glycoprotein, is a ROCA antigen and is expressed in the nervous system. J. Neurosci. 15, 562−573
  16. Kent, K. C., Wroblewski, L., Jackman, R. W., and Skillman, J. J. (1995) Platelet attachment stimulates endothelial cell regeneration after arterial injury. Surgery 117, 276−281 https://doi.org/10.1016/S0039-6060(05)80202-8
  17. Kim, H. K., Song, K. S., Chung, J.-H., Lee, K. R., and Lee, S.-N. (2004) Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 124, 376−384 https://doi.org/10.1046/j.1365-2141.2003.04773.x
  18. Klein-Soyer, C., Azorsa, D. O., Cazenave, J.-P., and Lanza, F. (2000) CD9 participates in endothelial cell migration during in vitro wound repair. Arterioscler. Thromb. Vasc. Biol. 20, 360−369 https://doi.org/10.1161/01.ATV.20.2.360
  19. Kojima, H., Kanada, H., Shimizu, S., Kasama, E., Shibuya, K., et al. (2003) CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J. Biol. Chem. 278, 36748−36753 https://doi.org/10.1074/jbc.M300702200
  20. Kroll, M. H., Mendelsohn, M. E., Miller, J. L., Ballen, K. K., Hrbolich, J. K., et al. (1992) Monoclonal antibody AG-1 initiates platelet activation by a pathway dependent on glycoprotein IIb-IIIa and extracellular calcium. Biochim. Biophys. Acta 1137, 248−256 https://doi.org/10.1016/0167-4889(92)90144-Z
  21. Lee, I. Y., Lee, J., Park, W. S., Nam, E.-C., Shin, Y. O., et al. (2001) 3C8, a new monoclonal antibody directed against a follicular dendritic cell line, HK. Immune Network 1, 26−31
  22. Lee, I. Y., Kim, J., Ko, E.-M., Jeoung, E. J., Kwon, Y.-G., et al. (2002) Interleukin-4 inhibits the vascular endothelical growth factor- and basic fibroblast growth factor-induced angiogenesis in vitro. Mol. Cells 14, 115−121
  23. Lee, I. Y., Ha, K. S., and Choe, J. (2003) 3C8 antigen is a novel protein expressed by human follicular dendritic cells. Biochem. Biophys. Res. Commun. 303, 624-630 https://doi.org/10.1016/S0006-291X(03)00384-X
  24. Lee, I. Y., Ko, E.-M., Kim, S.-H., Jeoung, D.-I., and Choe, J. (2005) Human follicular dendritic cells express prostacyclin synthase: a novel mechanism to control T cell numbers in the germinal center. J. Immunol. 175, 1658−1664
  25. Maecker, H. T., Todd, S. C., and Levy, S. (1997) The tetraspanin superfamily: molecular facilitators. FASEB J. 11, 428−442
  26. Marcondes, S., Lafay, M., Brohard-Bohn, B., de Nucci, G., and Rendu, F. (2000) Platelets induce human umbilical vein endothelial cell proliferation through P-selectin. Life Sci. 66, 1817−1826 https://doi.org/10.1016/S0024-3205(00)00505-1
  27. Martineau, I., Lacoste, E., and Gagnon, G. (2004) Effects of calcium and thrombin on growth factor release from platelet concentrates: kinetics and regulation of endothelial cell proliferation. Biomaterials 25, 4489−4502 https://doi.org/10.1016/j.biomaterials.2003.11.013
  28. Mohle, R., Green, D., Moore, M. A. S., Nachman, R. L., and Rafii, S. (1997) Constitutive production and thrombininduced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl. Acad. Sci. USA 94, 663−668
  29. Murayama, Y., Miyagawa, J., Oritani, K., Yoshida, H., Yamamoto, K., et al. (2004) CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells. J. Cell Sci. 117, 3379−3388 https://doi.org/10.1242/jcs.01201
  30. Pakala, R., Willerson, J. T., and Benedict, C. R. (1994) Mitogenic effect of serotonin on vascular endothelial cells. Circulation 90, 1919−1926
  31. Pintucci, G., Froum, S., Pinnell, J., Mignatti, P., Rafii, S., et al. (2002) Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor- 2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb. Haemost. 88, 834−842
  32. Seehafer, J. G. and Shaw, A. R. (1991) Evidence that the signalinitiating membrane protein CD9 is associated with small GTP-binding proteins. Biochem. Biophys. Res. Commun. 179, 401−406 https://doi.org/10.1016/0006-291X(91)91384-O
  33. Slupsky, J. R., Kamiguti, A. S., Rhodes, N. P., Cawley, J. C., Shaw, R. E., et al. (1997) The platelet antigens CD9, CD42 and integrin AIIbBIIIa can be topographically associated and transduce functionally similar signals. Eur. J. Biochem. 244, 168−175
  34. Tanaka, T., Kuroiwa, T., Ikeuchi, H., Ota, F., Kaneko, Y., et al. (2002) Human platelets stimulate mesangial cells to produce monocyte chemoattractant protein-1 via the CD40/CD40 ligand pathway and may amplify glomerular injury. J. Am. Soc. Nephrol. 13, 2488−2496 https://doi.org/10.1097/01.ASN.0000029588.07166.20
  35. Verheul, H. M. W., Jorna, A. S., Hoekman, K., Broxterman, H. J., Gebbink, M. F. B. G., et al. (2000) Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 96, 4216−4221
  36. Ware, J. A. and Heistad, D. D. (1993) Platelet-endothelium interactions. N. Engl. J. Med. 328, 628−635 https://doi.org/10.1056/NEJM199303043280907
  37. Zilber, M.-T., Setterblad, N., Vasselon, T., Doliger, C., Charron, D., et al. (2005) MHC class II/CD38/CD9: a lipid-raftdependent signaling complex in human monocytes. Blood 106, 3074−3081 https://doi.org/10.1182/blood-2004-10-4094