• Title/Summary/Keyword: Human Speech Recognition

Search Result 208, Processing Time 0.024 seconds

ARM 플랫폼 기반의 음성 감성인식 시스템 구현 (Implementation of the Speech Emotion Recognition System in the ARM Platform)

  • 오상헌;박규식
    • 한국멀티미디어학회논문지
    • /
    • 제10권11호
    • /
    • pp.1530-1537
    • /
    • 2007
  • 본 논문은 마이크로폰을 통해 실시간으로 습득된 음성으로부터 사람의 음성 감성상태를 평상, 기쁨, 슬픔, 화남 등 4가지로 구별할 수 있는 ARM 플랫폼 기반의 음성 감성인식 시스템 구현에 관한 것이다. 일반적으로 마이크로폰으로 수신된 음성은 화자 주변의 환경 잡음과 마이크로폰의 시스템 특성 때문에 입력 음성 신호가 왜곡되고 이로 인해 시스템의 성능이 저하된다. 본 논문에서는 이러한 잡음 영향을 최소화하기 위해 비교적 단순한 구조와 적은 연산 량을 가진 이동평균(MA, Moving Average) 필터를 입력 음성의 특징벡터 열에 적용하였다. 또한, 효율적으로 감성 특징벡터를 최적화할 수 있는 SFS(Sequential Forward Selection)기법을 적용해 제안 시스템의 성능을 최적화하였으며 감성 패턴 분류기로는 SVM(Support Vector Machine)을 사용하였다. 실험 결과 제안 감성인식 시스템은 모의실험에서 약 65%, ARM 플랫폼에서 약 62%의 인식률을 보였다.

  • PDF

딥 러닝을 이용한 음성인식 오류 판별 방법 (Speech Recognition Error Detection Using Deep Learning)

  • 김현호;윤승;김상훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.157-162
    • /
    • 2015
  • 자동통역(Speech-to-speech translation)의 최우선 단계인 음성인식과정에서 발생한 오류문장은 대부분 비문법적 구조를 갖거나 의미를 이해할 수 없는 문장들이다. 이러한 문장으로 자동번역을 할 경우 심각한 통역오류가 발생하게 되어 이에 대한 개선이 반드시 필요한 상황이다. 이에 본 논문에서는 음성인식 오류문장이 정상적인 인식문장에 비해 비문법적이거나 무의미하다는 특징을 이용하여 DNN(Deep Neural Network) 기반 음성인식오류 판별기를 구현하였으며 84.20%의 오류문장 분류성능결과를 얻었다.

  • PDF

운율 특성 벡터와 가우시안 혼합 모델을 이용한 감정인식 (Emotion Recognition using Prosodic Feature Vector and Gaussian Mixture Model)

  • 곽현석;김수현;곽윤근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.762-766
    • /
    • 2002
  • This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far. This is the why people don't want to get familiar with multi-service robots of today. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. Pitch and Energy extracted from the human speech are good and important factors to classify the each emotion (neutral, happy, sad and angry etc.), which are called prosodic features. HMM is the powerful and effective theory among several methods to construct the statistical model with characteristic vector which is made up with the mixture of prosodic features

  • PDF

산업용 로보트의 동작제어 명령어의 인식에 관한 연구 (A study on the voice command recognition at the motion control in the industrial robot)

  • 이순요;권규식;김홍태
    • 대한인간공학회지
    • /
    • 제10권1호
    • /
    • pp.3-10
    • /
    • 1991
  • The teach pendant and keyboard have been used as an input device of control command in human-robot sustem. But, many problems occur in case that the usef is a novice. So, speech recognition system is required to communicate between a human and the robot. In this study, Korean voice commands, eitht robot commands, and ten digits based on the broad phonetic analysis are described. Applying broad phonetic analysis, phonemes of voice commands are divided into phoneme groups, such as plosive, fricative, affricative, nasal, and glide sound, having similar features. And then, the feature parameters and their ranges to detect phoneme groups are found by minimax method. Classification rules are consisted of combination of the feature parameters, such as zero corssing rate(ZCR), log engery(LE), up and down(UD), formant frequency, and their ranges. Voice commands were recognized by the classification rules. The recognition rate was over 90 percent in this experiment. Also, this experiment showed that the recognition rate about digits was better than that about robot commands.

  • PDF

Using Utterance and Semantic Level Confidence for Interactive Spoken Dialog Clarification

  • Jung, Sang-Keun;Lee, Cheong-Jae;Lee, Gary Geunbae
    • Journal of Computing Science and Engineering
    • /
    • 제2권1호
    • /
    • pp.1-25
    • /
    • 2008
  • Spoken dialog tasks incur many errors including speech recognition errors, understanding errors, and even dialog management errors. These errors create a big gap between the user's intention and the system's understanding, which eventually results in a misinterpretation. To fill in the gap, people in human-to-human dialogs try to clarify the major causes of the misunderstanding to selectively correct them. This paper presents a method of clarification techniques to human-to-machine spoken dialog systems. We viewed the clarification dialog as a two-step problem-Belief confirmation and Clarification strategy establishment. To confirm the belief, we organized the clarification process into three systematic phases. In the belief confirmation phase, we consider the overall dialog system's processes including speech recognition, language understanding and semantic slot and value pairs for clarification dialog management. A clarification expert is developed for establishing clarification dialog strategy. In addition, we proposed a new design of plugging clarification dialog module in a given expert based dialog system. The experiment results demonstrate that the error verifiers effectively catch the word and utterance-level semantic errors and the clarification experts actually increase the dialog success rate and the dialog efficiency.

다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템 (Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm)

  • 염홍기;주종태;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.20-26
    • /
    • 2008
  • 지능형 로봇이나 컴퓨터가 일상생활 속에서 차지하는 비중이 점점 높아짐에 따라 인간과의 상호교류도 점점 중요시되고 있다. 이렇게 지능형 로봇(컴퓨터) - 인간의 상호 교류하는데 있어서 감정 인식 및 표현은 필수라 할 수 있겠다. 본 논문에서는 음성 신호와 얼굴 영상에서 감정적인 특징들을 추출한 후 이것을 Bayesian Learning과 Principal Component Analysis에 적용하여 5가지 감정(평활, 기쁨, 슬픔, 화남, 놀람)으로 패턴을 분류하였다. 그리고 각각 매개체의 단점을 보완하고 인식률을 높이기 위해서 결정 융합 방법과 특징 융합 방법을 적용하여 감정 인식 실험을 하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 인식 실험을 하였으며, 특징 융합 방법은 SFS(Sequential Forward Selection) 특징 선택 방법을 통해 우수한 특징들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 인식 실험을 실행하였다. 그리고 인식된 결과 값을 2D 얼굴 형태에 적용하여 감정을 표현하였다.

퍼지 로직을 이용한 감정인식 모델설계 (Design of Emotion Recognition Model Using fuzzy Logic)

  • 김이곤;배영철
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.268-282
    • /
    • 2000
  • Speech is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

음성신호를 이용한 감정인식 모델설계 (Design of Emotion Recognition Using Speech Signals)

  • 김이곤;김서영;하종필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.265-270
    • /
    • 2001
  • Voice is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

초등 진로 상담을 위한 인공지능 음성 인식 텍스트 레포지토리 구현 (Implementation of Artificial Intelligence Speech Recognition Text Repository for Elementary Career Counseling)

  • 유민정;마영지;구덕회
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.327-333
    • /
    • 2021
  • 현재 우리 사회는 4차 산업혁명 시대의 발전과 이에 따른 인공지능 기술의 발달이 급속도로 진행되고 있다. 이에 국가적 차원에서 인공지능 교육 및 인재 양성에 힘쓰고 있지만, 공교육에서 인공지능 기술 자체를 활용하여 현장에 적용한 사례는 매우 부족한 실정이다. 이에 본 연구에서는 초등학생의 진로 상담에 활용할 수 있는 인공지능 음성 인식 기술을 활용한 텍스트 레포지토리를 설계하고 구현하였다. 그동안 진로 상담의 효과를 위해 필요한 여러 회의 상담을 하는 것에는 현실적인 어려움이 있었다. 따라서 이를 해결하고, 더 나아가 해당 프로그램이 교육적으로 활용될 수 있는 다양한 방안에 대해 구상해보았다. 본 연구를 통해 설계 및 구현된 인공지능 기술이 우리 학교 현장에서 활용되며 실질적인 도움을 줄 수 있을 것으로 기대한다.

  • PDF

이동통신 환경에서 강인한 음성 감성특징 추출에 대한 연구 (A Study on Robust Speech Emotion Feature Extraction Under the Mobile Communication Environment)

  • 조윤호;박규식
    • 한국음향학회지
    • /
    • 제25권6호
    • /
    • pp.269-276
    • /
    • 2006
  • 본 논문은 이동전화 (Cellular phone)를 통해 실시간으로 습득된 음성으로부터 사람의 감성 상태를 평상 혹은 화남으로 인식할 수 있는 음성 감성인식 시스템을 제안하였다. 일반적으로 이동전화를 통해 수신된 음성은 화자의 환경 잡음과 네트워크 잡음을 포함하고 있어 음성 신호의 감성특정을 왜곡하게 되고 이로 인해 인식 시스템에 심각한 성능저하를 초래하게 된다. 본 논문에서는 이러한 잡음 영향을 최소화하기 위해 비교적 단순한 구조와 적은 연산량을 가진 MA (Moving Average) 필터를 감성 특정벡터에 적용해서 잡음에 의한 시스템 성능저하를 최소화하였다. 또한 특정벡터를 최적화할 수 있는 SFS (Sequential Forward Selection) 기법을 사용해서 제안 감성인식 시스템의 성능을 한층 더 안 정화시켰으며 감성 패턴 분류기로는 k-NN과 SVM을 비교하였다. 실험 결과 제안 시스템은 이동통신 잡음 환경에서 약 86.5%의 높은 인식률을 달성할 수 있어 향후 고객 센터 (Call-center) 등에 유용하게 사용될 수 있을 것으로 기대된다.