• Title/Summary/Keyword: Human Movement Characteristics

Search Result 203, Processing Time 0.027 seconds

A Human Mobility Model in Shipyards

  • Duong, Dat Van Anh;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.93-101
    • /
    • 2020
  • Shipyards are potential environments for using IoT services, sensor networks, and delay tolerant networks. Simulations of those services and networks strongly rely on human mobility models. Results obtained with an unrealistic model may not reflect the true performance of applications, protocols, and algorithms in a shipyard. A lot of synthetic models for human movements have been studied but most of them are generic and focus on the daily movements of humans on city scales. Nevertheless, workers in shipyards have unique movement characteristics such as movement speed, pause time, and attractions places. For instance, workers usually move to some places, where they work, and rarely move to other places in the factory. Movement characteristics of workers not only depend on workers but also on tasks, which they do. For instance, workers, who paint ships, have similar movement speed and pause time. Hence, in this paper, human movements in shipyards are studied. We propose a new human mobility model called the human mobility mode in shipyards (MIS). In MIS, workers are classified into multiple types. Movement characteristics of a worker are similar to other workers in the same type. Based on the visiting probability, workers have some places, where they frequently visits, and some places, where they rarely visit. We analyze real mobility traces and studie to achieve human movement characteristics from real traces. The results show that MIS provides a well-match to the movement characteristic from real traces.

Effects of Acute Transcranial Direct Current Stimulation on Muscle Endurance of the Lower Extremities for Young Healthy Adults (일회성 경두개 직류전기자극(tDCS) 적용이 젊은 성인의 하지 근지구력에 미치는 영향)

  • Park, Shin-Young;Ko, Do-Kyung;Jeong, Hyeong Do;Lee, Hanall;Lee, Hyungwoo;Kim, Chanki;An, Seungho;Kim, Jiyoung;Moon, Bosung;Son, Jee-Soo;Lee, Dohyeon;Lee, Eui-Young;Lee, Ju Hak;Im, Seungbin;Tan, Yuan;Jeon, Kyoungkyu;Kang, Nyeonju
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.3
    • /
    • pp.94-102
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effect of acute transcranial direct current stimulation (tDCS) on the isokinetic muscular endurance of the lower extremity for young adults. Method: Thirteen young adults performed isokinetic fatigue tasks for two experimental conditions including real tDCS and sham stimulation protocols. Before and after the task, the tensiomyography was used for evaluating muscle contraction characteristics of vastus medialis and semitendinosus. Paired t-test was performed to compare the fatigue index, changes in maximum radial displacement (∆Dm), delay time (∆Tc), and velocity of contraction (∆Vc) between tDCS conditions. Results: We found no significant differences in the fatigue index between real and sham conditions. In addition, the analyses identified no significant different values of ∆Dm, ∆Tc, and ∆Vc in the vastus medialis and semitendinosus between real and sham conditions. Conclusion: These findings suggest that the tDCS protocols may have no acute effect on lower limb muscle endurance for young adults. Future studies should consider the long-term effects of repetitive tDCS sessions, various stimulation positions, exercise tasks, and participant characteristics to more clearly understand the effect of tDCS on muscle endurance of lower extremities.

A Study on Characteristics of Experiencing Sensibility Space in The Perception of Kineticism 'Movement' (키네티시즘의 '움직임' 지각을 통한 체험적 감성 공간 특성에 관한 연구)

  • Kim, Jun-Young;Yoon, Jae-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.67-76
    • /
    • 2010
  • Recently the trend that human emotions become central is strongly on the rise beyond functions in the area of space. In the present situation, the current study is to examine the characteristics of experiential space of emotions through an approach to space appearing in kinetic art paying attention to the fact that the new spatial expressions and forms of Kineticism lie in introduction of 'movement' as a phenomenon that humans who are main agents of experiences can perceive. For research methods, spatial expressions were proposed according to each characteristic extracting characteristics to create space through 'movement' of Kineticism, and the features of experiential space of emotion were elicited by analyzing sensible elements and perceptual characteristics which stimulate human sensitivity through expressive aspects of 'movement' appearing in the case. As a result, it was found that characteristics appeared including immersion through non-daily stimulation, empathy through visual·perceptual stimulation, syn-aesthetic experiences through stimulation of thinking senses, and perceptual activation through physical movement etc. Namely, the present study has its meanings in seeking another directions and possibilities as emotional space to activate experiencers' diverse perceptions and senses by analyzing the characteristics of experiential emotional space through 'movement' of Kineticism which is one of modern plastic arts.

Motion Imitation Learning and Real-time Movement Generation of Humanoid Using Evolutionary Algorithm (진화 알고리즘을 사용한 인간형 로봇의 동작 모방 학습 및 실시간 동작 생성)

  • Park, Ga-Lam;Ra, Syung-Kwon;Kim, Chang-Hwan;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1038-1046
    • /
    • 2008
  • This paper presents a framework to generate human-like movements of a humanoid in real time using the movement primitive database of a human. The framework consists of two processes: 1) the offline motion imitation learning based on an Evolutionary Algorithm and 2) the online motion generation of a humanoid using the database updated bγ the motion imitation teaming. For the offline process, the initial database contains the kinetic characteristics of a human, since it is full of human's captured motions. The database then develops through the proposed framework of motion teaming based on an Evolutionary Algorithm, having the kinetic characteristics of a humanoid in aspect of minimal torque or joint jerk. The humanoid generates human-like movements far a given purpose in real time by linearly interpolating the primitive motions in the developed database. The movement of catching a ball was examined in simulation.

A Study on the Characteristics of Ethical Consumption in the Community Currency Movement Participant's Daily Life as a Consumer (공동체화폐운동 참여자의 소비생활에서 나타나는 윤리적 소비 특성 연구)

  • Chun, Kyung Hee;Song, In Sook
    • Korean Journal of Human Ecology
    • /
    • v.21 no.4
    • /
    • pp.745-764
    • /
    • 2012
  • The purpose of this study is to investigate the characteristics of ethical consumption in the Community Currency Movement participant's daily life as a consumer. Qualitative research methods are used for the understanding about the participation activities and the daily lives as a consumer of Hanbat LETS participants'. The characteristics of ethical consumption used for analysing of the Community Currency Movement are the subjective participation, production process-aware consumption, others care to consumption, sustainable consumption, voluntarily simple life. The major results of this study show that the Community Currency Movement is the alternative economic system practicing the ethical consumption. The Community Currency Movement increase the subject participation, realize the social responsibility and community society and the ecological value and voluntary simple life. This research get the meaning for considering the Community Currency Movement & the ethical consumption on the discriminatory perspective.

Underlying Control Strategy of Human Leg Posture and Movement

  • Park, Shinsuk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.649-663
    • /
    • 2004
  • While a great number of studies on human motor control have provided a wide variety of viewpoints concerning the strategy of the central nervous system (CNS) in controlling limb movement, none were able to reveal the exact methods how the movement command from CNS is mapped onto the neuromuscular activity. As a preliminary study of human-machine interface design, the characteristics of human leg motion and its underlying motor control scheme are studied through experiments and simulations in this paper. The findings in this study suggest a simple open-loop motor control scheme in leg motion. As a possible candidate, an equilibrium point control model appears consistent in recreating the experimental data in numerical simulations. Based on the general leg motion analysis, the braking motion by the driver's leg is modeled.

Generation Method of Robot Movement Using Evolutionary Algorithm (진화 알고리즘을 사용한 휴머노이드 로봇의 동작 학습 알고리즘)

  • Park, Ga-Lam;Ra, Syung-Kwon;Kim, Chan-Hwan;Song, Jae-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.315-316
    • /
    • 2007
  • This paper presents a new methodology to improve movement database for a humanoid robot. The database is initially full of human motions so that the kinetics characteristics of human movement are immanent in it. then, the database is updated to the pseudo-optimal motions for the humanoid robot to perform more natural motions, which contain the kinetics characteristics of robot. for this, we use the evolutionary algorithm. the methodology consists of two processes : (1) the offline imitation learning of human movement and (2) the online generation of natural motion. The offline process improve the initial human motion database using the evolutionary algorithm and inverse dynamics-based optimization. The optimization procedure generate new motions using the movement primitive database, minimizing the joint torque. This learning process produces a new database that can endow the humanoid robot with natural motions, which requires minimal torques. In online process, using the linear combination of the motion primitive in this updated database, the humanoid robot can generate the natural motions in real time. The proposed framework gives a systematic methodology for a humanoid robot to learn natural motions from human motions considering dynamics of the robot. The experiment of catching a ball thrown by a man is performed to show the feasibility of the proposed framework.

  • PDF

A new approach for the saccadic eye movement system simulation (Saccade 안구운동계의 시뮬레이션)

  • 박상희;남문현
    • 전기의세계
    • /
    • v.26 no.1
    • /
    • pp.87-90
    • /
    • 1977
  • Various simulation techniques were developed in the modeling of biological system during the last decades. Mostly analog and hybrid simulation techniques have been used. The authors chose the Digital Analog Simulation (DAS) technique by using the MIMIC language to simulate the saccadic eye movement system performances on the digital computer. There have been various models presented by many investigators after Young & Stark's sampled-data model. The eye movement model chosen by the authors is Robinson's model III which shows the parallel information processing characteristics clearly to the double-step input stimuli. In the process of simulation, the parameter and constants used were based on the neurophysiological data of the human and animals. The analog model blocks were converted to the corresponding MIMIC block diagrams and programmed into the MIMIC statements. The program was run on the CDC Cyber 72-14 computer. The essential input stimulus was double-step of 5 and 10 degrees, and target durations chosen were 50,100 and 150 msec. The results obtained by the DAS technqiue were in good agreement with analog simulation carried out by other investigators as well as with the experimental human saccadic eye movement responses to double-step target movements.

  • PDF

Predictive Characteristics of the Oculomotor System to the Periodic Signal (주기신호에 대한 안구운동의 예측 특성)

  • 이상효
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.145-150
    • /
    • 1981
  • In this paper, we measured the tracking response time of horizontal eye movement to the target moving according to the square waveform to investigate the predictive characteristics of the human oculomotor system. And in the experiment we used the square waves with an amplitude of 5 degree and frequencies o.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 Hz. Random occurrences of the human eye movement reponse time were analyzed using a finite Markov chain process and we found the results as follows. From both the experimental and theoretical results, we found the trend showing that Predictive characteristics moved from the transient state to the steady state.

  • PDF

Changes in The Pressure-Flow Control Characteristics of Shunt Valves Under Brain Pressure Pulsation (뇌압 펄스하에서 션트밸브의 압력-유량제어 특성곡선의 변화)

  • Hong Yisong;Lee Chong-Sun;Jang Jongyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.699-702
    • /
    • 2002
  • Shunt valves implanted in the subcutaneous tissue of brain to treat patient with hydrocephalus were numerically simulated to investigate influence of pressure pulsation on their flow control characteristics. Shunt valves are subjected to pressure variation since ventricles enclosing the brain are under pressure pulsation rather than uniform pressure due to blood pressure variation. We modeled flow orifice through shunt valve and imposed pulsating pressure and valve diaphragm movement to compute flow through the valve. The results of our study indicated that flow rate increased by $40{\%}$ by introducing pressure pulsation and diaphragm movement on the shunt valve. Our results demonstrate the pressure-flow control characteristics of shunt valves unplanted above human brain may be quite different from the characteristics obtained by syringe pump test with uniform pressure and no diaphragm movement.

  • PDF