• 제목/요약/키워드: Human Interface Element

검색결과 39건 처리시간 0.028초

Application of fuzzy measure and fuzzy integrals model to evaluation of human interface

  • Sohn, Young-Sun;Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.787-790
    • /
    • 1997
  • This paper proposes a method which selects essential elements in a human evaluation model using the Choquet integral based on fuzzy measures, and applies the model to the evaluation of human interface. Three kinds of concepts are defined to select essential elements. Increment Degree implies the increment degree from fuzzy measures of composed elements to the fuzzy measure of a combined element. Average of Increment Degree of an element means the relative possibility of superadditivity of the fuzzy measure of each combined element. Necessity Degree means the selection degree of each combined element as a result of the human evaluation. A task experiment, which consists of a static work and two dynamic works, is performed by the use of some human interfaces. In the experiment, (1) a warning sound which gives an attention to subjects, (2) a color vision which can be distinguished easily or not, (3) the size of working area and (4) a response of confirmation that is given from an interface, are considered as human interface elements. Subjects answer the questionnaire after the experiment. From the data of the questionnaire, fuzzy measures are identified and are applied to the proposed model. Effectiveness of the proposed model is confirmed by the comparison of human interface elements extracted from the proposed model and those from the questionnaire.

  • PDF

전자제품 휴먼인터페이스의 객체지향적 모델링 (Human Interface Modeling of Consumer Electronic Products by Using the Object-Oriented Technique)

  • 홍상우;한성호;곽지영
    • 대한인간공학회지
    • /
    • 제17권2호
    • /
    • pp.83-96
    • /
    • 1998
  • This paper suggests a data modeling scheme of human interface elements and their properties for consumer electronic products. The human interface elements were classified into three categories: individual, interaction and integration interface. The representative properties of each interface element were identified, and modeled by using the object-oriented technique. The results of this study are expected to be used for expressing the user interface of consumer electronic products. They are also expected to help understand the relationship between the usability and the user interface elements of a product.

  • PDF

QFD 기반에 의한 제화류의 감성지향적 품질설계 요소도출에 관한 실증적 연구 (Development of Customer-Oriented Quality Design Elements of Shoes based on QFD)

  • 김진호;황인극
    • 품질경영학회지
    • /
    • 제32권1호
    • /
    • pp.130-143
    • /
    • 2004
  • Although consumer needs for better products force manufactures to put emphasis on design, often development of a product has been done without the formal process to consider consumer needs. In order to identify the implicit needs of customers and the areas of potential demand on a product, several analysis scheme such as QFD (Quality Function Deployment) has been developed. QFD, also known as the House of Quality, is the efficient tool ever created to tie product and service design decisions directly to customer wants and needs, i.e. VoC (Voice of Customer) To utilize this tool on a product design, first of all, the consumers attributes and the engineering characteristics must be exactly investigated. However there were only few studies about them on shoe design. Hence in this paper we developed an innovative framework for shoes design based on QFD. As a result, we uncovered 29 dominant human satisfaction dimensions as the consumers attributes for customer-oriented quality evaluation of a comfortable shoes. Here, 29 human satisfaction dimensions for a shoe design were identified as the dimensions that represent the human sensitivity and psychological feeling on comfortable shoes. Also, we proposed 60 human interface elements as the engineering characteristics. The relationships between human satisfaction dimensions and human interface elements were investigated. This study will help the designers and manufacturers clarify the conceptual and abstract aspect of the design evaluation by proposing a more systematic and process-oriented method.

BRAZING CHARACTERISTICS BETWEEN CEMENTED CARBIDES AND STEEL USED BY AG-IN BRAZING FILLER

  • Nakamura, Mitsuru;Itoh, Eiji
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.551-554
    • /
    • 2002
  • As a general rule, the brazing process between cemented carbides and steel used by Silver (Ag) type brazing filler. The composition of Ag type filler were used Ag-Cu-Zn-Cd type filler mainly. But, the demand of Cadmium (Cd)-free in Ag type filler was raised recently. The reason why Cd-free in Ag brazing filler were occupied to vaporize as a CdO$_2$ when brazing process, because of Cd element was almost low boiling point of all Ag type filler elements. And, CdO$_2$ was a very harmful element for the human body. This experiment was developed Cd-freeing on Ag type filler that was used Indium (In) instead of Cd element. In this experiment, there were changed from 0 to 5% In addition in Ag brazing filler and investigated to most effective percentage of Indium. As a result, the change of In addition instead of Cd, there was a very useful element and obtained same property only 3% In added specimens compared to Cd 19% added specimens. These specimens were obtained same or more deflective strength. In this case, there were obtained 70 MPa over strength and wide brazing temperature range 650-800 C. A factor of deflective strength were influenced by composition and the shape of $\beta$ phase and between $\beta$ phase and cemented carbides interface. Indium element presented as $\alpha$ phase and non-effective factor directly, but it's occupied to solid solution hardening as a phase. $\beta$ phase were composed 84-94% Cu-Ni-Zn elements mainly. Especially, the presence of Ni element in interface was a very important factor. Influence of condensed Ni element in interface layer was increased the ductility and strength of brazing layer. Therefore, these 3% In added Ag type filler were caused to obtain a high brazing strength.

  • PDF

지하철 이용 승객을 고려한 사용자 중심의 인간공학적 설계에 관한 연구 (The ergonomic design that considers the user interfaces in the railroad)

  • 박성혁;오세찬;여민우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.415-416
    • /
    • 2006
  • In this paper, we propose the ergonomics design method in shape design applicable which considers the user interface for railroad. This study focuses on ergonomics design and sensibility engineering design, user interface, which should be considered from the conceptual design stage of the rolling. Human's sensitivity and User Interface of railroad investigated ergonomics studies of several type. The sensibility engineering design made approach of user center design in railroad design. New design railroad to satisfaction passenger's various desire, to safety and convenient through high technology, to sufficient passenger's aesthetic sense. Therefore, we have application to properly of ergonomics design element in railroad design. we expert visual design and user interface help greatly in excellent railroad design.

  • PDF

차내 경험의 디지털 트랜스포메이션과 오디오 기반 인터페이스의 동향 및 시사점 (Trends and Implications of Digital Transformation in Vehicle Experience and Audio User Interface)

  • 김기현;권성근
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.166-175
    • /
    • 2022
  • Digital transformation is driving so many changes in daily life and industry. The automobile industry is in a similar situation. In some cases, element techniques in areas called metabuses are also being adopted, such as 3D animated digital cockpit, around view, and voice AI, etc. Through the growth of the mobile market, the norm of human-computer interaction (HCI) has been evolving from keyboard-mouse interaction to touch screen. The core area was the graphical user interface (GUI), and recently, the audio user interface (AUI) has partially replaced the GUI. Since it is easy to access and intuitive to the user, it is quickly becoming a common area of the in-vehicle experience (IVE), especially. The benefits of a AUI are freeing the driver's eyes and hands, using fewer screens, lower interaction costs, more emotional and personal, effective for people with low vision. Nevertheless, when and where to apply a GUI or AUI are actually different approaches because some information is easier to process as we see it. In other cases, there is potential that AUI is more suitable. This is a study on a proposal to actively apply a AUI in the near future based on the context of various scenes occurring to improve IVE.

A Study on Developmental Direction of Interface Design for Gesture Recognition Technology

  • Lee, Dong-Min;Lee, Jeong-Ju
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.499-505
    • /
    • 2012
  • Objective: Research on the transformation of interaction between mobile machines and users through analysis on current gesture interface technology development trend. Background: For smooth interaction between machines and users, interface technology has evolved from "command line" to "mouse", and now "touch" and "gesture recognition" have been researched and being used. In the future, the technology is destined to evolve into "multi-modal", the fusion of the visual and auditory senses and "3D multi-modal", where three dimensional virtual world and brain waves are being used. Method: Within the development of computer interface, which follows the evolution of mobile machines, actively researching gesture interface and related technologies' trend and development will be studied comprehensively. Through investigation based on gesture based information gathering techniques, they will be separated in four categories: sensor, touch, visual, and multi-modal gesture interfaces. Each category will be researched through technology trend and existing actual examples. Through this methods, the transformation of mobile machine and human interaction will be studied. Conclusion: Gesture based interface technology realizes intelligent communication skill on interaction relation ship between existing static machines and users. Thus, this technology is important element technology that will transform the interaction between a man and a machine more dynamic. Application: The result of this study may help to develop gesture interface design currently in use.

Effect of femoral mechanical properties on primary stability of cementless total hip arthroplasty: a finite element analysis

  • Reimeringer, Michael;Nuno, Natalia
    • Advances in biomechanics and applications
    • /
    • 제1권3호
    • /
    • pp.187-210
    • /
    • 2014
  • With the goal of increasing the survivorship of the prosthesis and anticipating primary stability problems of new prosthetic implants, finite element evaluation of the micromotion, at an early stage of the development, is mandatory. This allows assessing and optimizing different designs without manufacturing prostheses. This study aimed at investigating, using finite element analysis (FEA), the difference in the prediction of the primary stability of cementless hip prostheses implanted into a $Sawbones^{(R)}$ 4th generation, using the manufacturer's mechanical properties and using mechanical properties close to that of human bone provided by the literature (39 papers). FEA was carried out on the composite $Sawbones^{(R)}$ implanted with a straight taper femoral stem subjected to a loading condition simulating normal walking. Our results show that micromotion increases with a reduction of the bone material properties and decreases with the augmentation of the bone material properties at the stem-bone interface. Indeed, a decrease of the cancellous Young modulus from 155MPa to 50MPa increased the average micromotion from $29{\mu}m$ up to $41{\mu}m$ (+42%), whereas an increase of the cancellous Young modulus from 155MPa to 1000MPa decreased the average micromotion from $29{\mu}m$ to $5{\mu}m$ (-83%). A decrease of cortical Young modulus from 16.7GPa to 9GPa increase the average global micromotion from $29{\mu}m$ to $35{\mu}m$ (+33%), whereas an increase of the cortical Young modulus from 16.7GPa to 21GPa decreased the average global micromotion from $29{\mu}m$ to $27{\mu}m$ (-7%). It can also be seen that the material properties of the cancellous structure had a greater influence on the micromotion than the material properties of the cortical structure. The present study shows that micromotion predicted at the stem-bone interface with material properties of the $Sawbones^{(R)}$ 4th generation is close to that predicted with mechanical properties of human femur.

임베디드 리눅스 기반 산업용 무선 HMI 소프트웨어 모듈 설계 및 구현 (The Design and Implementation of Embedded Linux-Based Industrial Wireless HMI Software Module)

  • 최숙영;문승진
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.336-342
    • /
    • 2007
  • 산업용 HMI(Human Machine Interface) 시스템은 공장 자동화의 주요 구성요소 중 하나로서 PLC와 연결되어 자동화 설비 또는 장치의 운전 상태를 감시하고 제어하는데 사용된다. 이러한 HMI는 주로 제조업체별로 특정한 시스템을 사용하고, 근거리에 위치하여 쓰이기 때문에 시스템 개발 시 많은 부하를 주게 되고 시스템 확장이 어려운 단점이 있다. 이에 본 논문에서는 오픈 소스인 임베디드 리눅스 기반에 멀티 플랫폼을 지원하는 Qt/Embedded와 무선 통신 모듈을 사용하여 터치패널형 산업용 HMI 소프트웨어 모듈을 설계 및 구현하였다. 이 모듈은 Qt가 지원되는 시스템이면 소스 수정 없이 사용할 수 있으며 무선 랜 모듈을 이용하여 시스템의 이동성 및 네트워크 구축 및 시스템 확장을 보다 유동성 있게 설계할 수 있다. 이에, 리눅스 기반의 무선통신이 가능한 HMI 소프트웨어 모듈 구현으로 이동성 확보 및 범용 운영체제의 사용으로 인한 시스템 개발 시 부하 감소와 가격 경쟁력의 향상을 이루게 되었다.