• Title/Summary/Keyword: Human Health Risk Assessment

Search Result 339, Processing Time 0.024 seconds

Health Risk Assessment of Lead Exposure through Multi-pathways in Korea (납의 다경로 노출에 의한 건강위해성평가 : 우리 나라 일부 지역 성인들을 대상으로)

  • Chung, Yong;Hwang, Man-Sik;Yang, Ji-Yeon;Jo, Seong-Joon
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.4
    • /
    • pp.203-216
    • /
    • 1999
  • This paper describes a set of multi-pathway models for estimating health risk to lead. The models link concentrations of an environmental contaminant (lead) in air, water and food to human exposure through inhalation, ingestion, and dietary routes. Exposure is used as the foundation for predicting risk of health detriment within the population. The process of estimating exposure using often limited data and extrapolating to a large diverse population requires many assumption, inferences, and simplification. This paper is divided into four section. The first section provides lead contaminant levels on obtaining environmental concentration of air, tap water, and foods. The second section provides a discussion of exposure parameters and uncertainty associated predicting human health risk of contaminants. The third and fourth section illustrate lifetime average daily exposure (LADE) and excess cancer risk (ECR) based on exposure parameters. The relationship between concentration of lead in an environmental medium and human exposure is determined with pathway exposure factors (PEFs). The calculation of LADE and ECR is carried out using Monte-Carlo simulation with probability density function of exposure parameters. Examination of the result reveals that, for lead exposure, ingestion (food) is the dominant route of exposure rather than inhalation (air), and ingestion (tap eater).

  • PDF

Human Health Risk, Environmental and Economic Assessment Based on Multimedia Fugacity Model for Determination of Best Available Technology (BAT) for VOC Reduction in Industrial Complex (산업단지 VOC 저감 최적가용기법(BAT) 선정을 위한 다매체 거동모델 기반 인체위해성·환경성·경제성 평가)

  • Kim, Yelin;Rhee, Gahee;Heo, Sungku;Nam, Kijeon;Li, Qian;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.325-345
    • /
    • 2020
  • Determination of Best available technology (BAT) was suggested to reduce volatile organic compounds (VOCs) in a petrochemical industrial complex, by conducting human health risk, environmental, and economic assessment based on multimedia fugacity model. Fate and distribution of benzene, toluene, ethylbenzene, and xylene (BTEX) was predicted by the multimedia fugacity model, which represent VOCs emitted from the industrial complex in U-city. Media-integrated human health risk assessment and sensitivity analysis were conducted to predict the human health risk of BTEX and identify the critical variable which has adverse effects on human health. Besides, the environmental and economic assessment was conducted to determine the BAT for VOCs reduction. It is concluded that BTEX highly remained in soil media (60%, 61%, 64% and 63%), and xylene has remained as the highest proportion of BTEX in each environment media. From the candidates of BAT, the absorption was excluded due to its high human health risk. Moreover, it is identified that the half-life and exposure coefficient of each exposure route are highly correlated with human health risk by sensitivity analysis. In last, considering environmental and economic assessment, the regenerative thermal oxidation, the regenerative catalytic oxidation, the bio-filtration, the UV oxidation, and the activated carbon adsorption were determined as BAT for reducing VOCs in the petrochemical industrial complex. The suggested BAT determination methodology based on the media-integrated approach can contribute to the application of BAT into the workplace to efficiently manage the discharge facilities and operate an integrated environmental management system.

Study on Health Risk Assessment of Non-carcinogenic Chemicals in Drinking Water (음용수 중 유해 화학 물질에 대한 위해성 평가에 관한 연구 - II. 비발암성 화학 물질을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Kim, Jong-Man;Park, Seong-Eun;Yang, Ji-Yeon;Lee, Ja-Koung;Hwang, Man-Sik;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.37-46
    • /
    • 1995
  • The purpose of this research is to estimate a safe environmental level of human exposure to thresholding-acting toxicants in drinking water and recommend the acceptable levels and management plans for maintaining good quality of drinking water' and protecting health hazard. This research has been funded as a national project for three years from 1992 to 1995. This study(the second year, 1993-1994) was conducted to monitor 39 species of noncarcinogenic chemicals such as volatile organic compounds(VOCs), polynuclear aromatic hydrocarbens(PAHs), pesticides and heavy metals of drinking water at some area in six cities of Korea, and evaluate health risk due to these chemicals through four main steps (hazard identification, exposure assessment, dose-response assessment and risk characterization) of risk assessment in drinking water. In hazard identification, 39 species of non-carcinogenic chemicals were identified by the US EPA classification system. In the step of exposure assessment, sampling of tap water from the public water supply system had been conducted from 1993 to 1994, and 39 chemicals were analyzed. Inclose-response assessment for non-carcinogens, reference doses(RfD) and lifetime health advisories(HAs) of lifetime acceptable levels were calculated. In risk characterization of detected chemicals, the hazard quotients of noncarcinogens were less than one except those of manganese and iron in D city.

  • PDF

Assessment of toxic metals in vegetables with the health implications in Bangladesh

  • Islam, Md. S.;Ahmed, Md. K.;Proshad, Ram;Ahmed, Saad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.241-254
    • /
    • 2017
  • This study was conducted to investigate the levels of heavy metals in twelve species of vegetables and assessment of health risk. Samples were analyzed using inductively coupled plasma mass spectrometer (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd and Pb in vegetables species were 0.37-5.4, 0.03-17, 0.35-45, 0.01-2.6, 0.001-2.2, and 0.04-8.8 [mg/kg, fresh weight (fw)], respectively. The concentrations of As, Cd and Pb in most vegetable species exceeded the maximum permissible levels, indicating unsafe for human consumption. Health risks associated with the intake of these metals were evaluated in terms of estimated daily intake (EDI), and carcinogenic and non-carcinogenic risks by target hazard quotient (THQ). Total THQ of the studied metals from most of the vegetables species were higher than 1, indicated that these types of vegetables might pose health risk due to metal exposure. The target carcinogenic risk (TR) for As ranged from 0.03 to 0.48 and 0.0004 to 0.025 for Pb which were higher than the USEPA acceptable risk limit (0.000001) indicating that the inhabitants consuming these vegetables are exposed to As and Pb with a lifetime cancer risk. The findings of this study reveal the health risks associated with the consumption of heavy metals through the intake of selected vegetables in adult population of Bangladesh.

Expanding the Substances of Water Quality Standard for the Protection of Human Health Based on Risk Assessment (인체 위해성기반 수질환경기준 항목 확대를 위한 연구)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Water quality standards (WQS) are mandatory to guarantee the human health and protection of aquatic ecosystems, and maintain the condition of suitable water quality. The present WQS for the protection of human health in Korea contain nine substances (As, Cd, $Cr^{6+}$, CN, Pb, Hg, ABS, organophosphorus compounds and PCBs), but it is insufficient to preserve the human and aquatic ecosystem from a variety of chemicals. Therefore, it is necessary to expand the substance of WQS for the protection of human health. In this study, we chose the 20 chemicals from 43 chemicals of the project entitled 'Development of Integrated Methodology for Evaluation of Water Environment'. The methodology for calculating water quality criteria was amended from the US Environmental Protection Agency (US EPA)'s equation for deriving ambient water quality criteria for the protection of human health. The factors including fish intake, drinking water intake, and human body weight used in the equation reflected Korean situations. The monitoring values were derived from the water quality monitoring data in Korean four main rivers. The orders of priorities of chemicals were evaluated by human health risk assessment, and the proposed WQS was derived by technical and economic analyses. These results were reflected to expand the WQS for the protection of human health.

Determination of Human Health Risk Incorporated with Arsenic Bioaccessibility and Remediation Goals at the Former Janghang Smelter Site ((구)장항제련소 매입구역의 비소 오염도와 생물학적접근성을 반영한 위해성평가 및 정화수준 결정에 관한 연구)

  • Yang, Kyung;Kim, Young-Jin;Im, Jinwoo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.52-61
    • /
    • 2014
  • Metal concentrations in the former Janghang smelter area were determined and human health risk of arsenic (As) with bioaccessibility was investigated. Site investigation of the area within 1.5 km from the Janghang smelter showed the As concentrations of 4.8~169.8 mg/kg (avg. 37.8 mg/kg). For 85 samples out of 126 samples, As concentrations were higher than the Worrisome Level of the Korean Soil and Environment Conservation Act, and seven samples exceeded the Countermeasure Standard. Risk assessment for As incorporated with the bioaccessibility revealed that potential human health risk of the carcinogenic ($1.8{\sim}5.0{\times}10^{-5}$) was above the acceptable risk range ($10^{-5}{\sim}10^{-6}$) while the risk of the non-carcinogenic was not found. Remediation goals based on risk incorporated with bioaccessibility of As ranged from 10.8 to 20.0 mg/kg. Such difference in the remediation goals resulted from various bioaccessibility of As (i.e., between 8.7~66.3%) at the study site.

Risk Assessment and Pharmacogenetics in Molecular and Genomic Epidemiology

  • Park, Sue-K.;Choi, Ji-Yeob
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.371-376
    • /
    • 2009
  • In this article, we reviewed the literature on risk assessment (RA) models with and without molecular genomic markers and the current utility of the markers in the pharmacogenetic field. Epidemiological risk assessment is applied using statistical models and equations established from current scientific knowledge of risk and disease. Several papers have reported that traditional RA tools have significant limitations in decision-making in management strategies for individuals as predictions of diseases and disease progression are inaccurate. Recently, the model added information on the genetic susceptibility factors that are expected to be most responsible for differences in individual risk. On the continuum of health care, from diagnosis to treatment, pharmacogenetics has been developed based on the accumulated knowledge of human genomic variation involving drug distribution and metabolism and the target of action, which has the potential to facilitate personalized medicine that can avoid therapeutic failure and serious side effects. There are many challenges for the applicability of genomic information in a clinical setting. Current uses of genetic markers for managing drug therapy and issues in the development of a valid biomarker in pharmacogenetics are discussed.

Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers

  • Golinko, Vasyl;Cheberyachko, Serhiy;Deryugin, Oleg;Tretyak, Olena;Dusmatova, Olga
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.543-549
    • /
    • 2020
  • Background: The working conditions of bus drivers are difficult; they lead to occupational diseases and require careful study, particularly in Ukraine. The objective of the article is the description of occupational health risks of passenger bus drivers that lead to deteriorating health. Methods: The risk assessment was performed using a modified Risk Score method, which allowed determining the generalized level of danger to the driver's health. The hygienic hazards level was assessed as based on Stevenson's law, which was generalized later. Results: Based on the modification of the Risk Score method, it was possible to depart from expert assessments method of the risk level and calculate the general indicator based on the degree of dependence of the impact on the human body on its intensity, proposed by V. Minko. This allows objective determining of the impact of hygiene hazards on the health of the driver and to predict the occurrence of occupational diseases associated with the cardiovascular system, musculoskeletal system, and partial or complete disability due to the accumulation of emotional fatigue. The hazard assessment was carried out for three brands of passenger buses common in Ukraine, in which the driver is exposed to the dangers of fever, vibration, noise, harmful impurities in the bus cabin, and emotional load. Conclusion: The health of drivers in the cabins of passenger buses is most affected by hygiene hazards: fever, vibration, and emotional stress. The generalized level of risk is calculated by the modified method of Risk Score is 0.83; -0.99, -0.92 respectively.

The Concepts of Nanotoxicology and Risk Assessment of the Nanoparticles (나노 독성의 개념 및 나노입자에 대한 위해성 평가의 필요성)

  • Maeng, Seung-Hee;Yu, Il-Je
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.87-98
    • /
    • 2005
  • Human exposure to nano-sized particles (NSP) has increased over the last century with anthropogenic sources, and the rapid development of nanotechnology becomes an another source of such exposure. Information regarding the safety of nanotechnology and its product, nanoparticles, is urgently needed when assuming exposure through inhalation, oral intake, and penetration across skin is ever increasing as growing nanotechnology rapidly. The recent advancement of biokinetic studies with NSP and newer epidemiologic and toxicologic studies with ultrafine particles can be the basis for the nanotoxicology. Some concepts of nanotoxicology can be known from the results of these results. Specific small size of NSP, when inhaled, facilitates deposition by difusional mechanism in all regions of the respiratory tract and uptake into cells, ranscytosis across epithelial and endothelial cells into the blood and lymph circulation to reach target sites. Translocation along axons and dendrites of neuron makes an access to CNS and ganglia. These biokinetics are dependent on NSP surface chemistry. Risk assessments of NSP include appropriate and relevant doses/concentration selections, the increase effects in the organism and the benefits of possible desirable effects. An interdisciplinary team approach is desirable for nanotoxicology research and an appropriate risk assessment.