
In  th is  ar t ic le,  we reviewed the l i terature on r isk
assessment (RA) models with and without molecular
genomic markers and the current utility of the markers in
the pharmacogenetic field. Epidemiological risk assessment
is  appl ied using stat is t ica l  models and equat ions
established from current scientific knowledge of risk and
disease. Several papers have reported that traditional RA
tools have significant limitations in decision-making in
management strategies for individuals as predictions of
diseases and disease progression are inaccurate. Recently,
the model added information on the genetic susceptibility
factors that are expected to be most responsible for
differences in individual risk. On the continuum of health
care, from diagnosis to treatment, pharmacogenetics has

been developed based on the accumulated knowledge of
human genomic variation involving drug distribution and
metabolism and the target of action, which has the potential
to fac i l i ta te personal ized medic ine that  can avoid
therapeutic failure and serious side effects. There are many
challenges for the applicability of genomic information in a
cl inical sett ing. Current uses of genetic markers for
managing drug therapy and issues in the development of a
valid biomarker in pharmacogenetics are discussed. 
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INTRODUCTION

There is a growing interest in the

epidemiologic research field of genomic

molecular based health care for early detection

of illness and individual therapy. Many

common and complex diseases are generally

considered to be a multifactorial disorders;

understanding genetic and molecular data and

the related multifactorial etiological factors is

essential for risk assessment. The goal of the

molecular and genomic epidemiologic field is

to understand the effects of various exposures

on disease outcome and the genetic variability

that may alter the prevention and treatment of

disease. Molecular genomic markers can play a

role in more accurately predicting disease

development, drug response, and dosage

optimization of drugs by adding markers to

previous risk assessment tools. This has

implications for personalized predictive

prevention of disease development and

progression, personalized treatment of diseases,

and drug discovery and development. In this

article, we reviewed the literature related to risk

assessment models with and without molecular

genomic markers and the current utility of the

markers in the pharmacogenetic area.   

RISK ASSESSMENT IN
MOLECULAR AND GENOMIC
EPIDEMIOLOGY

Risk assessment (RA), a step in the risk

management process in environmental and

occupational health, estimates the probability

of a hazard effect of risk factors in individuals

or populations. Environmental and occupa-

tional health focuses on chemicals and toxic

materials above a certain threshold that are risk

factors for various diseases and death. In

environmental and occupational health, the risk

assessment process includes ‘Hazard Iden-

tification’, a ‘Dose-response Assess- ment’

between the exposure dose and probability or

incidence of effect, and ‘Exposure Quantifi-

cation’for the determina-tion of the dosage

that people receive [1]. 

In epidemiology, risk assessment estimates

the chances of developing a disease over a

specified interval in a person with certain risk

factors. Epidemiological risk assessment is

applied using statistical models and equations

established from current scientific knowledge

pertaining to etiology and the risk factors of

disease. The RA models used in epidemiology

are classified into four types according to the

aim, study design of the baseline data,

statistical model construction, and target

population. These are summarized in Table 1. 

The first is the absolute risk model. In this

model, a cohort study with sufficient follow-up

was used to compute the real probability of

disease development in a cohort with sufficient

follow-up periods. This model computes the

probability of a person’s risk using Cox’s

proportional hazard model. The disease
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probability that is calculated from the cohort

population is projected onto the general

population. An example is the Framingham

and National Cholesterol Education Program

tools [2] developed from the Framingham risk

score in 1948 [3] to predict a person chance of

having a heart attack [7]. 

The second model uses a competing risk

analysis. It is based on data from a case-control

study design for relative risk (RR) estimates

and general population statistics as incidence

and mortality rates. Disease probability in the

future is calculated using integral calculus

equations based on age-specific data such as

joint odds ratios calculated by a combination of

risk factors in case-control studies and the

incidence rates of a certain disease along with

the mortality rates of other diseases. The target

population is the general population. Many RA

models use the competing risk method. A well-

known example is The Breast Cancer Risk

Assessment Tool (BCRAT) designed by the

National Cancer Institute and the National

Surgical Adjuvant Breast and Bowel Project

that aimed to estimate a woman’s risk of

developing invasive breast cancer from 1989

[4]. The initial model was intended for

Caucasian women but has been updated for

African-American women using the

Contraceptive and Reproductive Experiences

study [20]. 

The third type is the relative risk model of the

‘Harvard Cancer Risk Index’reported in 2000

[11]. The Risk Index Working Group at

Harvard University used group consensus

among researchers to classify risk factors into

definite, probable, and possible causes of

cancer. Baseline information was collected

from representative studies and a risk score

was developed through researchers’
consensus. The relative risks due to individual

risk factors from the representative data were

converted to cancer risk points according to the

strength of the causal association. The risk

estimates were then totaled. The total was

divided by the population average risk of

cancer for a person with the same age and sex

and multiplied by the average 10-year risk for

disease from the Surveillance, Epidemiology

and End Results (SEER) data that calculated

the 10-year cumulative risk in the US

population [11]. 

The fourth model is targeted to specific

populations such as specific heredity factors or

families. An example is the BACAPRO model

for breast cancer risk prediction due to BRCA

1/2 gene mutations and a family history of

breast and ovarian cancer [12].  

Although several risk prediction models exist

at present, accurately predicting an individual’s

risk for disease remains a challenge. Several

papers have reported that traditional RA tools

do not accurately predict coronary heart disease

[21]. Substantial limitations have also been

reported when these tools are used to guide

individual therapy [22,23]. There are

significant limitations in breast cancer models,

such as their ability to predict breast cancer risk

accurately when allowing for individualization

of management strategies as well as model

limits in ensuring that appropriate and

autonomous decision-making takes place [24]. 

Advances in information pertaining to

genetic susceptibility factors are expected to be

most responsible for the differences in

individual disease risk. It is anticipated that

revised RA risk models which incorporate

gene information and molecular markers will

improve prediction accuracy. Dr. Mitchell H.

Gail at the US National Cancer Institute added

seven single-nucleotide polymorphisms

(SNPs) that had previously been associated

with breast cancer to the BCRAT. Although the

model that included the SNPs provided less

discriminatory accuracy than the BCRAT, it

showed the potential to improve the

discriminatory accuracy of the BCRAT

modestly (the area under the receiver operating

characteristic curve from 0.607 to 0.632) [25].

Dr. Gail showed small improvements in the

Table 1. Classification of epidemiological risk assessment (RA) models according to aim, baseline
data, target population, and statistical method   

Type Characteristics Examples 

Absolute RA model 

Competing RA 
model 

Relative  RA model

RA model for 
heredity 

RA model using 
probability that a 
given individual has 
the disease 

Aim: to estimate the probability of  disease development
Target population: general population
Baseline data and study design: cohort study population
Statistical method: Cox-proportional hazard model

Aim: to estimate the probability of disease development
Target population: general population
Baseline data and study design: RR estimates from a case-control 
study; general population-based incidence and mortality 

Statistical method: Logistic regression model for computing RR 
estimates and complex integral calculus equations applied to age-
specific data  

Aim: to estimate the probability of disease development
Target population: general population
Baseline data: risk point determined by experts’consensus based on 
previous representative studies; population based average risk (SEER)

Statistical method: the score summed individual risk factor risk 
estimates divided by the population average projects to individual 10-
year cumulative risk by multiplying population average cumulative 
risk

Aim: to estimate the probability of disease development
Target population: specific population with heredity or family history 
of a certain disease

Baseline data and study design: family history in the specific 
populations based on pedigrees and/or prevalence of gene mutation 

Statistical method: Penetrance estimation and disease developing risk 
calculation according to gene mutation

Aim: to estimate the conditional probability given a certain disease 
Target population: general population or specific population exposed 
to specific factors such as toxicants

Baseline data and study design: case-control (diagnosis, high risk 
group detection) or case series data (prognosis)

Statistical method: logistic regression model

Framingham heart score [2,3]

BARAT [4]
Colon cancer [5,6]
Lung cancer [7,8]
Prostate cancer [9]
Melanoma [10]

Harvard Cancer Risk Index [11]

With genetic information: 
BRCAPRO [12]
PancPRO [13]
Without genetic information:
Claus model [14]
IBIS (Tyrer-Cuzick) model [15]

Clinicogenomic model for lung 
cancer diagnosis [16]

Model for silica exposed 
population [17]

Model for occupational asthma
[18]
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uncertainty to assume equal weight for each

allele and the arbitrary assignment of the

unfavorable allele in a case in which no

information pertaining to functional inferiority

[38]. In contrast, the genome-wide scanning

approach is a hypothesis-generating design that

does not depend on current knowledge to

conduct a non-biased global genome

assessment. Although the modest effect size of

common variants, even in combination, leads

to an argument of biological plausibility

[39,40], the GWAS approach expects to

discover the biologic pathways in polygenic

traits [41]. Through the progress of human

genetic variation and the haplotype map

(known as the HapMap) coupled with rapid

improvements in genotyping technology and

analysis, 416 genome-wide association studies

(GWAS) attempted to assay at least 100,000

SNPs in the first stage, and SNP-trait

associations with p-values of less than 1.0 x 10-5

have been published thus far, reporting 400

novel GWAS loci in 75 diseases in a catalog

published by the Human Genome Research

Institute [42]. However, it appears premature to

launch a GWAS in PGx because drug response

as an outcome is more complex and the sample

size with specific types of responder/non-

responder or adverse reactions is much smaller

compared to a typical disease-association

study. Therefore, tremendous international

collaboration is required in terms of a treatment

regimen and drug response, such as that for

SLCO1B1 and statin-induced myopathy, as

conducted in two sets of patient and control

groups from large trials of approximately

12,000 and 20,000 participants from the

SEARCH Collaborative Group [43]. 

In the guidance for industry pharma-

cogenomic data submissions issued by the US

FDA, a valid genomic biomarker is defined as

a biomarker that is measured in an analytical

test system with well-established performance

characteristics and for which there is an

established scientific framework or body of

evidence that elucidates the physiologic,

toxicologic, pharmacologic, or clinical

absorption, disposition, and effect (efficacy and

safety) [28]. Given that researchers reported an

inherited basis for drug-response phenotypes in

enzyme activity studies in the 1950s (reviewed

in [29]), pharmacogenetic biomarkers have the

potential to identify responders and non-

responders, avoid toxicity and adjust the

dosage of drugs to optimize efficacy and safety

for each patient by providing an integrated

approach to developments in genomics and

associated technological innovations. This has

implications not only for individual treatment

but for drug discovery and development

methods [30].

Early PGx studies were hypothesis-based

candidate gene approaches that resulted in a

few striking examples, such as 6-mercapto

purine and TPMT [31], clopidogrel and

CYP2C19 [32], irinotecan and UGT1A1 [33]

and carbamazepine and the HLA-B*1502 allele

[34]. The simple methodology and statistical

analysis used in conjunction with a comparably

small sample size is the advantage of the

candidate approach; however, it is rare to find

strong and monogenic polymorphism

candidates for drug response, low power for

polygenic traits, and limited knowledge of gene

and polymorphic function and drug pathways

[35], thereby missing the true candidate gene

and variation. As an extension of the candidate

gene approach, a pathway-based genotype

approach evaluates the combined effects of

multiple genes in the same and/or different

pathways to identify more sensitive and

specific predictor profiles of drug response,

such as CYP2C9 as a metabolizing enzyme

and VKORC1 as a drug target for warfarin

dosing [36], and DNA repair genes (XPD,

ERCC1, and XRCC1) for clinical outcome of

cisplatin-based chemotherapy [37] to amplify

the modest effects of individual polymor-

phisms and enhance the predictive power.

However, this remains limited by previous

knowledge in its selection of the genes and

pathways for drugs. It is often difficult to

analyze the gene-gene interaction based on the

a priori biological pathway due to the

benefit when deciding whether to take

tamoxifen for prevention and whether to

recommend mammogram screening in the

BCRAT plus 7 SNPs model compared with the

BCRAT [26]. New RA models with genetic

information will effectively characterize

substantial high-risk individuals in populations

exposed to silica [17] and occupational

asthmatic factors [18]. Moreover, experience in

molecular genetic testing applied to patients’
prognosis and diagnosis provides knowledge

that molecular genomic markers play an

important role in the pre-detection and

prognosis of individual diseases in a variety of

clinical contexts, which heralds the future of

genomics-based Personalized Predictive

Preventive Medicine as idealized by Dr.

Francis Collins. Two examples are as follows.

MammaPrint is a molecular genomic

diagnostic test that assesses the risk of breast

cancer progression and drug response. It is

more accurate in predicting a patient’s

prognosis relative to clinicopathological factors

such as the tumor size and lymphatic invasion

[27]. The second example is a combined clinic-

genomic model that adds gene expression

markers to traditional clinical factors for lung

cancer diagnosis. It can diagnose lung cancer

with higher validity (nearly 100% sensitivity

and 91% specificity), even when the

physician’s diagnosis is uncertain [16]. 

We expect improvements in the power of

elucidation on human risk assessment by

adding molecular genomic factors. These new

RA models, which include molecular genomic

markers, will increase predictability by

reducing misclassification bias through more

valid exposure biomarkers.

PHARMACOGENOMICS IN
MOLECULAR AND GENOMIC
EPIDEMIOLOGY

Pharmacogenetics or pharmacogenomics

(PGx) is the study of variations in DNA and

RNA related to drug response, including drug
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significance of the test results [44]. There have

been a limited number of potentially useful

examples of pharmacogenomic DNA and RNA

variant biomarkers approved by the FDA,

although they are categorized as ‘ test

recommended’or ‘information only’(Table 2).

To overcome the challenges related to the

applicability of genomic information as a valid

biomarker in clinical practice, the study design

needs to be considered. Most studies published

were based on observational retrospective

assessments of patients receiving treatment

while the heterogeneity of the disease and

treatment increased the likelihood of spurious

findings. Although in the context of

experimental designs (clinical trials), valid

retrospective studies of a genomic biomarker

require data from well-conducted randomized

clinical trials; sample availability on a majority

of patients to avoid selection bias; a

prospectively stated hypothesis, analysis

techniques, predefined and standardized assay

and scoring system; and large sample size and

power justification (reviewed in [45]). The

gold standard is the prospective clinical trials

that provide the setting for the evaluation of

genomic biomarker validation, although this

method is in general more expensive than an

observational study. For example, the Trial

Assigning Individualized Options for

Treatment (TAILORx) was designed to

integrate the 21-gene assay into the clinical

decision-making process based on genomic

biomarker recurrence scores in tamoxifen-

treated patients with breast cancer [46]. Table 3

summarizes the general pros and cons of

various study approaches. 

Other issues as we move toward clinical

integration of PGx information include the

following: 1) defining drug response, suitably

defined clinical endpoints (i.e., death),

biomarkers or surrogate endpoints; 2) careful

and sophisticated analysis of inter-individual

variability in the demographic, environmental,

lifestyle, and/or physiologic factors that affect

drug response; 3) a cut off value for biomarkers

based on supportive and rational analytical data

and on the study design; 4) ethnic differences

and population stratification; 5) the use of

comprehensive inherited information such as

epigenetic factors and copy number variation

as well as genetic factors to improve sensitivity. 

SUMMARY 

Risk assessment and personalized medicine

using molecular and genomic markers is a

young field that holds considerable promise for

contributions to healthcare by prevention,

Table 3. Comparison of epidemiological study designs in pharmacogenetic studies

Observational study (case-series study)
Ancillary study for biomarkers to 

clinical trial
Randomized controlled trial for

biomarkers

General population
Real world treatment

Heterogeneous treatment regimen
Heterogeneous outcome assessment
Cannot establish causality

Adopted and modified  from [48] with copyright permission.

Selected and uniform treatment
regimen

More careful outcome assessment 
Cost and time efficiency: already

established collaborative setting

Selected population
Cannot establish causality

Can establish causality (prospective
study)

Treatment assignment based on the
biomarkers

More careful outcome assessment 

Selected population
Often small sample size

Table 2. Valid pharmacogenetic biomarkers among drug labels approved by the FDA

Valid biomarker Drug Drug label information / possible mechanism

CYP2C19

CYP2C19

CYP2C9

CYP2C9 and VKORC1

CYP2D6

CYP2D6

CYP2D6

DPD

Familial Hypercholestremia (deficiency, 
and/or mutation, of receptors for low 
density lipoprotein [LDL])

HLA-B*1502 allele 

HLA-B*5701 allele

KRAS mutation

NAT variants

TPMT 

UGT1A1

Adopted and modified from [47].

Clopidogrel

Voriconazole

Celecoxib

Warfarin

Atomoxetine

Fluoxetine

Codeine 

Capecitabine

Atorvastatin 

Carbamazepine

Abacavir

Panitumumab

Rifampin
Isoniazid
Pyrazinamide

Azathioprine 

Irinotecan

CYP2C19 poor metabolizer is associated with lower 
systemic exposure to the active metabolite 

CYP2C19 variants (poor metabolizer or ultra-rapid 
metabolizer) with genetic defect leads to change in 
voriconazole exposure

CYP2C9 poor metabolizer may have abnormally high 
plasma levels due to reduced metabolic clearance of 
celecoxib

CYP2C9*2 or CYP2C9*3 alleles is associated with 
reduced warfarin clearance; VKORC1 variant haplotypes 
in regulatory regions leading to variable expression with 
higher anticoagulation

CYP2D6 poor metabolizer is associated with higher 
systemic exposure to atomoxetine

Fluoxetine inhibits the activity of CYP2D6, and thus may 
make normal metabolizers resemble poor metabolizers

Ultra-rapid metabolizers is associated with higher systemic 
exposure to morphine, the active metabolite

DPD deficiency increased side effect risk

Altered HMG-CoA reductase activity; dosage adjustment 
for homozygous and heterozygous familial 
hypercholestremia

Altered immunologic response leading to serious 
dermatologic adverse effect

Altered immunologic response leading to hypersensitivity, 
lactic acidosis and severe hepatomegaly

Lack of efficacy in colorectal cancer patients with KRAS
mutations

Slow acetylation may lead to higher blood levels of the 
drug

Thiopurine methyltransferase deficiency or lower activity 
due to mutation  increased exposure to drug

Nilotinib
UGT1A1 mutation with decreased expression is associated 
with higher systemic exposure to drugs
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earlier diagnosis, early intervention, effective

interventions, and better outcomes. The major

challenges associated with genetic biomarkers

appear to be a lack of reproducibility and

validation. Collaborative effort from various

experts such as epidemiologists, clinicians,

biologists, and biostatisticians is needed for

further development and for the creation of

novel approaches.
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