DOI QR코드

DOI QR Code

Risk Assessment and Pharmacogenetics in Molecular and Genomic Epidemiology

  • Park, Sue-K. (Department of Preventive Medicine, Seoul National University College of Medicine) ;
  • Choi, Ji-Yeob (Pharmacogenomics Research Center, Inje University College of Medicine)
  • Published : 2009.11.30

Abstract

In this article, we reviewed the literature on risk assessment (RA) models with and without molecular genomic markers and the current utility of the markers in the pharmacogenetic field. Epidemiological risk assessment is applied using statistical models and equations established from current scientific knowledge of risk and disease. Several papers have reported that traditional RA tools have significant limitations in decision-making in management strategies for individuals as predictions of diseases and disease progression are inaccurate. Recently, the model added information on the genetic susceptibility factors that are expected to be most responsible for differences in individual risk. On the continuum of health care, from diagnosis to treatment, pharmacogenetics has been developed based on the accumulated knowledge of human genomic variation involving drug distribution and metabolism and the target of action, which has the potential to facilitate personalized medicine that can avoid therapeutic failure and serious side effects. There are many challenges for the applicability of genomic information in a clinical setting. Current uses of genetic markers for managing drug therapy and issues in the development of a valid biomarker in pharmacogenetics are discussed.

Keywords

References

  1. Schulte PA, Waters M. Using molecular epidemiology in assessing exposure for risk assessment. Ann N Y Acad Sci 1999; 895: 101-111 https://doi.org/10.1111/j.1749-6632.1999.tb08079.x
  2. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-1847 https://doi.org/10.1161/01.CIR.97.18.1837
  3. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: The Framingham Study. Am J Cardiol 1976; 38(1): 46-51 https://doi.org/10.1016/0002-9149(76)90061-8
  4. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 1989; 81(24): 1879-1886 https://doi.org/10.1093/jnci/81.24.1879
  5. Selvachandran SN, Hodder RJ, Ballal MS, Jones P, Cade D. Prediction of colorectal cancer by a patient consultation questionnaire and scoring system: A prospective study. Lancet 2002; 360(9329): 278-283 https://doi.org/10.1016/S0140-6736(02)09549-1
  6. Imperiale TF, Wagner DR, Lin CY, Larkin GN, Rogge JD, Ransohoff DF. Using risk for advanced proximal colonic neoplasia to tailor endoscopic screening for colorectal cancer. Ann Intern Med 2003; 139(12): 959-965 https://doi.org/10.7326/0003-4819-139-12-200312160-00005
  7. Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst 2007; 99(9): 715-726 https://doi.org/10.1093/jnci/djk153
  8. Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst 2003; 95(6): 470-478 https://doi.org/10.1093/jnci/95.6.470
  9. Fears TR, Guerry D 4th, Pfeiffer RM, Sagebiel RW, Elder DE, Halpern A, et al. Identifying individuals at high risk of melanoma: A practical predictor of absolute risk. J Clin Oncol 2006; 24(22): 3590-3596 https://doi.org/10.1200/JCO.2005.04.1277
  10. Optenberg SA, Clark JY, Brawer MK, Thompson IM, Stein CR, Friedrichs P. Development of a decision-making tool to predict risk of prostate cancer: The Cancer of the Prostate Risk Index (CAPRI) test. Urology 1997; 50(5): 665-672 https://doi.org/10.1016/S0090-4295(97)00451-2
  11. Colditz GA, Atwood KA, Emmons K, Monson RR, Willett WC, Trichopoulos D, et al. Harvard report on cancer prevention volume 4. Harvard Cancer Risk Index: Risk Index Working Group, Harvard Center for Cancer Prevention. Cancer Causes Control 2000; 11(6): 477-488 https://doi.org/10.1023/A:1008984432272
  12. Berry DA, Parmigiani G, Sanchez J, Schildkraut J, Winer E. Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 1997; 89(3): 227-238 https://doi.org/10.1093/jnci/89.3.227
  13. Wang W, Chen S, Brune KA, Hruban RH, Parmigiani G, Klein AP. PancPRO: Risk assessment for individuals with a family history of pancreatic cancer. J Clin Oncol 2007; 25(11): 1417-1422 https://doi.org/10.1200/JCO.2006.09.2452
  14. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer: Implications for risk prediction. Cancer 1994; 73(3): 643-651 https://doi.org/10.1002/1097-0142(19940201)73:3<643::AID-CNCR2820730323>3.0.CO;2-5
  15. Cuzick J, Forbes J, Edwards R, Baum M, Cawthorn S, Coates A, et al. First results from the International Breast Cancer Intervention Study (IBIS-I): A randomised prevention trial. Lancet 2002; 360(9336): 817-824 https://doi.org/10.1016/S0140-6736(02)09962-2
  16. Beane J, Sebastiani P, Whitfield TH, Steiling K, Dumas YM, Lenburg ME, et al. A prediction model for lung cancer diagnosis that integrates genomic and clinical features. Cancer Prev Res (Phila Pa) 2008; 1(1): 56-64 https://doi.org/10.1158/1940-6207.CAPR-08-0011
  17. McCanlies E, Landsittel DP, Yucesoy B, Vallyathan V, Luster ML, Sharp DS. Significance of genetic information in risk assessment and individual classification using silicosis as a case model. Ann Occup Hyg 2002; 46(4): 375-381 https://doi.org/10.1093/annhyg/mef055
  18. Demchuk E, Yucesoy B, Johnson VJ, Andrew M, Weston A, Germolec DR, et al. A statistical model for assessing genetic susceptibility as a risk factor in multifactorial diseases: Lessons from occupational asthma. Environ Health Perspect 2007; 115(2): 231-234
  19. National Heart Lung and Blood Institute. Risk Assessment Tool for Estimating Your 10-year Risk of Having a Heart Attack. Bethesda, MD: National Heart Lung and Blood Institute; 2004 [cited 2009 Oct 10]. Available from: URL:http://hp2010.nhlbihin.net/ATPiii/calcula tor.asp
  20. National Cancer Institute. Breast cancer risk assessment tool. Bethesda, MD: National Cancer Institute; 2007 [cited 2009 Oct 5]. Available from: URL:http://www.cancer. gov/bcrisktool/
  21. Johnson KM, Dowe DA, Brink JA. Traditional clinical risk assessment tools do not accurately predict coronary atherosclerotic plaque burden: A CT angiography study. AJR Am J Roentgenol 2009; 192(1): 235-243 https://doi.org/10.2214/AJR.08.1056
  22. Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: How do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol 2003; 41(9): 1475-1479 https://doi.org/10.1016/S0735-1097(03)00187-6
  23. Nasir K, Michos ED, Blumenthal RS, Raggi P. Detection of high-risk young adults and women by coronary calcium and National Cholesterol Education Program Panel III guidelines. J Am Coll Cardiol 2005; 46(10): 1931-1936 https://doi.org/10.1016/j.jacc.2005.07.052
  24. Bellcross CA, Lemke AA, Pape LS, Tess AL, Meisner LT. Evaluation of a breast/ovarian cancer genetics referral screening tool in a mammography population. Genet Med 2009. Epub 2009 Sep 11 https://doi.org/10.1097/GIM.0b013e3181b9b04a
  25. Gail MH. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 2008; 100(14): 1037-1041 https://doi.org/10.1093/jnci/djn180
  26. Gail MH. Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model. J Natl Cancer Inst 2009; 101(13): 959-963 https://doi.org/10.1093/jnci/djp130
  27. Buyse M, Loi S, van't Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. InJ Natl Cancer st 2006; 98(17): 1183-1192 https://doi.org/10.1093/jnci/djj329
  28. Food and Drug Administration, HHS. International Conference on Harmonisation; Guidance on E15 pharmacogenomics Definitions and Sample Coding; Availability. notice. Fed Regist 2008; 73(68): 19074-19076
  29. Meyer UA. Pharmacogenetic: five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 2004; 5(9): 669-676 https://doi.org/10.1038/nrg1428
  30. Roses AD. Pharmacogenetics in drug discovery and development: A translational perspective. Nat Rev Drug Discov 2008; 7(10): 807-817 https://doi.org/10.1038/nrd2593
  31. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine Smethyltransferase gene locus. J Natl Cancer Inst 1999; 91(23): 2001-2008 https://doi.org/10.1093/jnci/91.23.2001
  32. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 2009; 360(4): 363-375 https://doi.org/10.1056/NEJMoa0808227
  33. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramirez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 2009; 27(16): 2604-2614 https://doi.org/10.1200/JCO.2008.20.6300
  34. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: A marker for Stevens-Johnson syndrome. Nature 2004; 428(6982): 486 https://doi.org/10.1038/428486a
  35. Wu X, Gu J, Spitz MR. Strategies to identify pharmacogenomic biomarkers: Candidate gene, pathway-based, and genome-wide approaches. In: Innocenti F, editor. Genomics and Pharmacogenomics in Anticancer Drug Development and Clinical Response. New Jersey: Humana Press; 2009. p. 353-370
  36. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360(8): 753-764 https://doi.org/10.1056/NEJMoa0809329
  37. Quintela-Fandino M, Hitt R, Medina PP, Gamarra S, Manso L, Cortes-Funes H, et al. DNA-repair gene polymorphisms predict favorable clinical outcome among patients with advanced squamous cell carcinoma of the head and neck treated with cisplatin-based induction chemotherapy. J Clin Oncol 2006; 24(26): 4333-339 https://doi.org/10.1200/JCO.2006.05.8768
  38. Wu X, GU J. Pharmacogenetics in cancer chemotherapy. In: Rebbeck TR, Ambrosone CB, Shields PG, editors. Molecular Epidemiology: Applications in Cancer and Other Human Diseases. New York: Informa Heathcare; 2008. p.113-128
  39. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: Theoretical and practical concerns. Nat Rev Genet 2005; 6(2): 109-118 https://doi.org/10.1038/nrg1522
  40. Ziegler A, Konig IR, Thompson JR. Biostatistical aspects of genome-wide association studies. Biom J 2008; 50(1): 8-28 https://doi.org/10.1002/bimj.200710398
  41. Hirschhorn JN. Genomewide association studies: Illuminating biologic pathways. N Engl J Med 2009; 360(17): 1699-1701 https://doi.org/10.1056/NEJMp0808934
  42. National Human Genome Research Institute. A Catalog of Published Genome-Wide Association Studies. Bethesda, MD: National Human Genome Research Institute; 2009 [cited 2009 Oct 5]. Available from: URL: http://www.genome.gov/26525384
  43. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SLCO1B1 variants and statin-induced myopathy: A genomewide study. N Engl J Med 2008; 359(8): 789-799 https://doi.org/10.1056/NEJMoa0801936
  44. Center for Drug Evaluation Research, Center for Biologic Evaluation Research, Center for Devices and Radiological Health. Guidance for Industry Pharmacogenomic Data Submissions. Silver Spring, MD: Food and Drug Administration; 2005 [cited 2009 Oct 5]. Available from: URL: http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm126957.pdf
  45. Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: Theoretical considerations and practical challenges. J Clin Oncol 2009; 27(24): 4027-4034 https://doi.org/10.1200/JCO.2009.22.3701
  46. Sparano JA, Paik S. Development of the 21- gene assay and its application in clinical practice and clinical trials. J Clin Oncol 2008;26(5): 721-728 https://doi.org/10.1200/JCO.2007.15.1068
  47. Food and Drug Administration. Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels. Silver Spring, MD: Food and Drug Administration; 2009 [cited 2009 Oct 5]. Available from: URL:http://www.fda.gov/Drugs/ScienceResearch/Researc hAreas/Pharmacogenetics/ucm083378.htm
  48. Ulrich CM, Ambrosone CB. Molecular epidemiology designs for prognosis. In:Rebbeck TR, Ambrosone CB, Shields PG, editors. Molecular Epidemiology: Applications in Cancer and Other Human Diseases. New York: Informa Heathcare; 2008: p. 41-52

Cited by

  1. Effect of genetic and environmental influences on cardiometabolic risk factors: a twin study vol.10, pp.None, 2009, https://doi.org/10.1186/1475-2840-10-96
  2. Towards a personalized risk assessment for exposure of humans to toxic substances vol.24, pp.2, 2009, https://doi.org/10.1590/1414-462x201600020135