Journal of the Korean Institute of Intelligent Systems
/
v.11
no.1
/
pp.28-32
/
2001
인간의 손동작 인식은 오랫동안 언어로서의 역할을 해왔던 통신수단의 한 방법이다. 현대의 사회가 정보화 사회로 진행됨에 따라 보다 빠르고 정확한 의사소통 및 정보의 전달을 필요로 하는 가운데 사람과 컴퓨터간의 상호 연결 혹은 사람의 의사 표현에 있어 기존의 장치들이 가지는 단점을 보안하며 이 부분에 사람의 두 손으로 표현되는 자유로운 몸짓을 이용하려는 연구가 최근에 많이 진행되고 있는 추세이다. 본 논문에선 2차원 입력 영상으로부터 동적인 손동작의 사용 없이 손의 특징을 이용한 새로운 인식 알고리즘을 제안하고, 보다 높은 인식률과 실 시간적 처리를 위해 Radial Basis Function Network 및 부가적인 특징점을 통한 손동작의 인식을 구현하였다. 또한 인식된 손동작의 의미를 바탕으로 인식률 및 손동작 표현의 의미성에 대한 정확도를 판별하기 위해 로봇의 제어에 적용한 실험을 수행하였다.
This article proposes a design and implementation methodology of a gesture-based interface for augmented reality games. The topic of gesture-based augmented reality games is a promising area in the immersive future games using human body motions. However, due to the instability of the current motion recognition technologies, most previous development processes have introduced many ad hoc methods to handle the shortcomings and, hence, the game architectures have become highly irregular and inefficient This article proposes an efficient development methodology for gesture-based augmented reality games through prototyping a table tennis game with a gesture interface. We also verify the applicability of the prototyping mechanism by implementing and demonstrating the augmented reality table tennis game. In the experiments, the implemented prototype has stably tracked real rackets to allow fast movements and interactions without delay.
Journal of the Korean Institute of Intelligent Systems
/
v.27
no.2
/
pp.126-131
/
2017
In this paper, we propose a method to extract meaningful motion among various kinds of hand gestures on giving commands to robots using hand gestures. On giving a command to the robot, the hand gestures of people can be divided into a preparation one, a main one, and a finishing one. The main motion is a meaningful one for transmitting a command to the robot in this process, and the other operation is a meaningless auxiliary operation to do the main motion. Therefore, it is necessary to extract only the main motion from the continuous hand gestures. In addition, people can move their hands unconsciously. These actions must also be judged by the robot with meaningless ones. In this study, we extract human skeleton data from a depth image obtained by using a Kinect v2 sensor and extract location data of hands data from them. By using the Kalman filter, we track the location of the hand and distinguish whether hand motion is meaningful or meaningless to recognize the hand gesture by using the hidden markov model.
Journal of Advanced Information Technology and Convergence
/
v.10
no.1
/
pp.71-83
/
2020
In this paper, we propose a system that can detect the shape of a hand at high speed using an FPGA. The hand-shape detection system is designed using Verilog HDL, a hardware language that can process in parallel instead of sequentially running C++ because real-time processing is important. There are several methods for hand gesture recognition, but the image processing method is used. Since the human eye is sensitive to brightness, the YCbCr color model was selected among various color expression methods to obtain a result that is less affected by lighting. For the CbCr elements, only the components corresponding to the skin color are filtered out from the input image by utilizing the restriction conditions. In order to increase the speed of object recognition, a median filter that removes noise present in the input image is used, and this filter is designed to allow comparison of values and extraction of intermediate values at the same time to reduce the amount of computation. For parallel processing, it is designed to locate the centerline of the hand during scanning and sorting the stored data. The line with the highest count is selected as the center line of the hand, and the size of the hand is determined based on the count, and the hand and arm parts are separated. The designed hardware circuit satisfied the target operating frequency and the number of gates.
Hand posture recognition is an important technique to enable a natural and familiar interface in HCI(human computer interaction) field. In this paper, we introduce a hand posture recognition method by using a depth camera. Moreover, the hand posture recognition method is incorporated with MPEG-U based advanced user interaction (AUI) interface system, which can provide a natural interface with a variety of devices. The proposed method initially detects positions and lengths of all fingers opened and then it recognizes hand posture from pose of one or two hands and the number of fingers folded when user takes a gesture representing a pattern of AUI data format specified in the MPEG-U part 2. The AUI interface system represents user's hand posture as compliant MPEG-U schema structure. Experimental results show performance of the hand posture recognition and it is verified that the AUI interface system is compatible with the MPEG-U standard.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.7
/
pp.685-691
/
2020
In this study, an algorithm that recognizes numbers from 0 to 9 was developed using the data obtained after tracking hand movements using the echo signal of a millimeter-wave radar sensor at 77 GHz. The echo signals obtained from the radar sensor by detecting the motion of a hand gesture revealed a cluster of irregular dots due to the difference in scattering cross-sectional area. A valid center point was obtained from them by applying a K-Means algorithm using 3D coordinate values. In addition, the obtained center points were connected to produce a numeric image. The recognition rate was compared by inputting the obtained image and an image similar to human handwriting by applying the smoothing technique to a CNN (Convolutional Neural Network) model trained with MNIST (Modified National Institute of Standards and Technology database). The experiment was conducted in two ways. First, in the recognition experiments using images with and without smoothing, average recognition rates of 77.0% and 81.0% were obtained, respectively. In the experiment of the CNN model with augmentation of learning data, a recognition rate of 97.5% and 99.0% on average was obtained in the recognition experiment using the image with and without smoothing technique, respectively. This study can be applied to various non-contact recognition technologies using radar sensors.
Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
The Journal of Korea Robotics Society
/
v.4
no.4
/
pp.257-264
/
2009
This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.11a
/
pp.344-348
/
2000
인간의 손동작 인식은 오랫동안 언어로서의 역할을 해왔던 통신수단의 한 방법이다. 현대의 사회가 정보화 사회로 진행됨에 따라 보다 빠르고 정확한 의사소통 및 정보의 전달을 필요로 하는 가운데 사람과 컴퓨터간의 상호 연결 혹은 사람의 의사 표현에 있어 기존의 장치들이 가지는 단점을 보안하며 이 부분에 사람의 두 손으로 표현되는 자유로운 몸짓을 이용하려는 연구가 최근에 많이 진행되고 있는 추세이다. 본 논문에선 2차원의 입력 영상으로부터 동적인 손동작의 인식을 위해 복잡하고 시간이 많이 소요되는 기존의 방법과는 다르게 부가적인 특별한 장치의 사용 없이 손의 특징을 이용한 새로운 인식 알고리즘을 제안하고, 보다 높은 인식률과 실 시간적 처리를 위해 Radial Basis Function Network 및 부가적인 특징점을 통한 손동작의 인식을 구현하였다. 또한 인식된 손동작의 의미를 바탕으로 인식률 및 손동작 표현의 의미성에 대한 정확도를 판별하기 위해 로봇의 제어에 적용한 실험을 수행하였다.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
1999.11a
/
pp.438-442
/
1999
제스처 인식은 직관적일 뿐 아니라, 몇 가지의 기본 구성요소에 의하여 코드화(code)가 용이하여, 인간과 컴퓨터의 상호작용(HCI, Human-Computer Interaction)에 있어서 폭넓게 사용되고 있다. 본 논문에서는 손의 모양이나 크기와 같은 개인차 및 조명의 변화나 배율과 같은 입력환경의 영향을 최소화하여, 특별한 초기화 과정이나 모델의 준비과정 없이도 제스처를 인식할 수 있고, 적은 계산량으로 실시간 인식이 가능한 제스처 인식 시스템의 개발을 목표로 한다. 본 논문에서는 손에 부착하는 센서나 마커 없이, CCD 카메라에 의하여 입력된 컬러영상에서, 컬러정보 및 동작정보를 이용하여 손영역을 추출하고, 추출된 손의 경계선 정보를 이용하여 경계선-중심 거리 함수를 생성했다. 그리고, 손가락의 끝 부분에서는 경계선-중심 거리가 극대점을 이룬다는 원리를 이용하여 생성된 함수의 주파수를 분석하여 극대점을 구함으로써 각각의 손가락 끝 위치를 찾고, 손의 자세를 인식하여 제스처를 인식했다. 또한 본 논문에서 제안된 제스처 인식 방법은 PC상에서 구현되어 그 유용성과 실효성이 증명되었다.
Human posture recognition has attracted tremendous attention in ubiquitous environment, performing arts and robot control so that, recently, many researchers in pattern recognition and computer vision are working to make efficient posture recognition system. However the most of existing studies is very sensitive to human variations such as the rotation or the translation of body. This is why the feature, which is extracted from the feature extraction part as the first step of general posture recognition system, is influenced by these variations. To alleviate these human variations and improve the posture recognition result, this paper presents 3D Star Skeleton and Principle Component Analysis (PCA) based feature extraction methods in the multi-view environment. The proposed system use the 8 projection maps, a kind of depth map, as an input data. And the projection maps are extracted from the visual hull generation process. Though these data, the system constructs 3D Star Skeleton and extracts the rotation invariant feature using PCA. In experimental result, we extract the feature from the 3D Star Skeleton and recognize the human posture using the feature. Finally we prove that the proposed method is robust to human variations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.