• Title/Summary/Keyword: Human Fetal Testis

Search Result 8, Processing Time 0.029 seconds

An Ultrastructural Study of Sertoli Cells in Human Fetal Testes (태아 고환에서 버팀세포의 미세형태학적 연구)

  • Lee, Tae-Jin;Yoon, Sam-Hyun;Kim, Mi-Kyung;Park, Eon-Sub;Yoo, Jae-Hyung
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.157-165
    • /
    • 2001
  • Sertoli cells in the normal adult testis are nondividing cells, which are relatively inconspicuous on cross section of the seminiferous tubule and comprise about 10% to 15% of the tubular cellular elements. Ultrastructurally, Sertoli cells have characteristic nucleoli, plasma membrane, and cytoplasmic components. The plasma membrane has two types of intercellular junctions which are developed at puberty: junctions between adjacent Sertoli cells and Sertoli cell-germ ceil junction. However, the ultrastructural findings of Sertoli cells in human fetus is not fully elucidate yet. In the present study, human fetal testes ($14\sim27$ weeks) obtained from artificially induced abortions legally without gross malformation were studied using transmission electron microscopy to make clear the differentiation process of Sertoli cells in human. In human fetal testes from 14 weeks to 27 weeks, the cell junctions of Sertoli-germ cells and Sertoli-Sertoli cells are desmosome like structure and not tight junction or desmosome. The Overall intracytoplasmic organelles of Sertoli cells are relatively sparse. The mitochondrias are relatively abundant but no developed cristae. And the rough endoplasmic reticuli are abundant and smooth endoplasmic reticuli are sparse. The amount of lipid droplets are regularly observed in human fetal Sertoli cells. No microfilaments or Charcot-Bottcher's crystalloids are present. From the results, Sertoli cells in human fetal testes are somewhat different ultrastructural findings with puberty or adult. However, to make clear the differentiation process of Sertoli cells in human, further study for 28 weeks to puberty is required.

  • PDF

Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis

  • Huo, Ran;Zhu, Hui;Lu, Li;Ying, Lanlan;Xu, Min;Xu, Zhiyang;Li, Jianmin;Zhou, Zuomin;Sha, Jiahao
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.

A Study on Growth of Human Testicular Tissue in 3-Dimensional Collagen Gel Tissue Culture (Collagen Gel을 이용한 사람의 고환 조직배양에 관한연구)

  • Lee, Choong-Hyun;Lee, Sang-Cheol;Lee, Sun-Joo;Sohn, Joon-Woong;Chang, Sung-Goo;Kim, Jin-Il;Chai, Soo-Eung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.1
    • /
    • pp.53-56
    • /
    • 1993
  • A recently developed collagen gel culture technique has been applied to study on growth in tissue of human testicular tissue. Minimum Eagle's medium supplemented with amino acid, 10% Fetal Bovine Serum and 0.1mM non-essential amino acid are emploid. Tissue fragments on collagan gel are fixed at time intervals for the histologic findings of testis. The mature spermatids are maintained for 2 weeks and can be observed until four weeks. But the rate of glucose consumption is increased contrary to histologic findings.

  • PDF

Expression of N-Methylpurine-DNA Glycosylase Gene during Fetal Development and Adult in Mice (생쥐 태아 및 성체 조직에서의 N-Methylpurine-DNA Glycosylase 유전자의 발현)

  • Sohn, Tae-Jong;Kim, Nam-Keun;Lee, Sook-Hwan;Han, Sei-Yul;Ko, Jung-Jae;Park, Chan;Lee, Woo-Sik;Lee, Chan;Lee, Yong-Hee;Cha, Kwang-Yul
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.101-105
    • /
    • 1999
  • N-Methylpurine-DNA glycosylase (MPG) removes N-methylpurine and other damaged purines in DNA. RT-PCR analysis revealed MPG mRNA expression at various tissues of fetal development from day 8 to day 18 fetus and day 400 mature adult. The MPG transcripts were abundant during fetal development in mice. In placenta, the MPG mRNA was continuously decreased from day 8 post coitum (p.c) to day 18 p.c. fetus. The high level of mRNA in fetal brain and liver was drastically declined in day 400 mature adult. The expression of MPG, originally characterized by its highest level of expression in the epididymis of adult mouse, was detected with high level in several other reproductive organ, including the ovary, oviduct, testis, vas deference, uterus, and seminal vesicles. These results demonstrate developmental stage- and tissue-specific variation of MPG gene expression.

  • PDF

Morphological Differentiation of Leydig Cells in Human Fetal Testes (사람 태아 고환에서 간질세포 분화의 형태학적 관찰)

  • Rhee, Kye-Il;Kim, Dae-Joong;Kim, Kyung-Yong;Park, Eon-Sub
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.511-522
    • /
    • 1999
  • The Leydig cell found within the interstitium of the testis is important in the spermatogenesis. The differentiation of Leydig cell, even though relatively well known in animals, is not fully elucidated yet in human. In the present study, human fetal testes ($14\sim27$ weeks) obtained from artificially induced abortions legally without gross malformations were studied using light and transmission electron microscopy to make clear the differentiation process of Leydig cells in humans. Leydig cells could be classified as 4 types: fusiform, light, dark, and degenerating cells. The most immature cell was the fusiform cells found frequently at 14 weeks, which seemed to differentiate successively into light and dark cells. Light cells were most frequently found at 17 weeks and dark cells at 24 weeks. Light cells were found to have mitochondria and smooth endoplasmic reticuli (sER) most prominently than any other cell types. The lumen of sER became to be expanded with age. Some electron-dense inclusions were observed in the mitochondrial matrix of the dark cells. Lipid droplets found more in light cells than dark cells were most prominent at 16 weeks and gradually decreased after 20 weeks. Glycogen particles were rich in dark cells. Degenerating cells were most frequently found at 27 weeks. From the results, it is suggested that Leydig cells in human fetal testes undergo similar differentiation process af in animals.

  • PDF

Reabsorption of Neutral Amino Acids Mediated by Amino Acid Transporter LAT2 and TAT1 in The Basolateral Membrane of Proximal Tubule

  • Park Sun Young;Kim Jong-Keun;Kim In Jin;Choi Bong Kyu;Jung Kyu Yong;Lee Seoul;Park Kyung Jin;Chairoungdua Arthit;Kanai Yoshikatsu;Endou Hitoshi;Kim Do Kyung
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.421-432
    • /
    • 2005
  • In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

Molecular Characterization and Expression Pattern of Gene IGFBP-5 in the Cashmere Goat (Capra hircus)

  • Wang, X.J.;Shi, J.J.;Yang, J.F.;Liang, Y.;Wang, Y.F.;Wu, M.L.;Li, S.Y.;Guo, X.D.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.606-612
    • /
    • 2012
  • Insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the six members of IGFBP family, important for cell growth, apoptosis and other IGF-stimulated signaling pathways. In order to explore the significance of IGFBP-5 in cells of the Inner Mongolian Cashmere goat (Capra hircus), IGFBP-5 gene complementary DNA (cDNA) was amplified by reverse transcription polymerase chain reaction (RT-PCR) from the animal's fetal fibroblasts and tissue-specific expression analysis was performed by semi-quantitative RT-PCR. The gene is 816 base pairs (bp) in length and includes the complete open reading frame, encoding 271 amino acids (GenBank accession number JF720883). The full cDNA nucleotide sequence has a 99% identity with sheep, 98% with cattle and 95% with human. The amino acids sequence shares identity with 99%, 99% and 99%, respectively. The bioinformatics analysis showed that IGFBP-5 has an insulin growth factor-binding protein homologues (IB) domain and a thyroglobulin type-1 (TY) domain, four protein kinase C phosphorylation sites, five casein kinase II phosphorylation sites, three prenyl group binding sites (CaaX box). The IGFBP-5 gene was expressed in all the tested tissues including testis, brain, liver, lung, mammary gland, spleen, and kidney, suggesting that IGFBP-5 plays an important role in goat cells.