• Title/Summary/Keyword: Human Exposure Assessment

Search Result 358, Processing Time 0.039 seconds

A Case Study of Health Impact Assessment on Incinerator Construction Project - Human Risk Assessment due to Inhalation Exposure to Heavy Metals - (소각로 건설사업에 대한 건강영향평가 사례연구 - 중금속 흡입에 따른 인체 위해성 평가 -)

  • Kim, Youngha;Choi, Sangki;Lee, Youngsoo
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2009
  • We conducted human risk assessment due to inhalation exposure to heavy metals emitted from incinerator. The process of health impact assessment(HIA) on incinerator is as follows: The first step is to presume and calculate the amount of heavy metals emitted using emission factor. The second step is to conduct an exposure assessment using the K-SCREEN model which is used for predicting the concentration in a conservative method. The last step is to carry out a risk assessment on carcinogenic and non-carcinogenic substances. This study revealed that rank of carcinogenic human risk was $Cr^{+6}$ > As > Ni > Cd, and values of human risk assessment on carcinogenic and non-carcinogenic substances is lower than the US criteria for risk assessment except $Cr^{+6}$. It is expected that the technique of HIA, especially human risk assessment on heavy metals, would be applied to the incinerator construction project. In addition, more systematic studies are needed to overcome some weak points and limits found in this study.

APPLICATION OF METABOLITE PROFILE KINETICS FOR EXPOSURE AND RISK ASSESSMENT

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.34-45
    • /
    • 2006
  • Chemical toxicants are metabolically converted to numerous metabolites in the body. Toxicokinetic characteristics of metabolites could be therefore used as biomarker of exposure for human risk assessment. Biologically based dose response (BBDR) model was proposed for future direction of risk assessment. However, this area has not been developed well enough for human application. Benzo(a)pyrene (BP), for example, is a well-known environmental carcinogen and may produce more than 100 metabolites and BPDE-DNA adduct, a covalently bound form of DNA with benzo(a)pyrene diolepoxides (BPDES), has been applied to qualitatively or quantitaively estimate human exposure to BP. In addition, di(2-ethylhexyl) phthalate (DEHP), a widely used plasticize. in the polymer industry, is one of endocrine-disrupting chemicals (EDCs) and has been monitored in humans using urinary or serum concentrations of DEHP or its monomer MEHP for exposure and risk assessment. However, it is difficult to estimate the actual level of toxicants using these biomarkers in humans using. This presentation will discuss a methodology of exposure and risk assessment by application of metabolic profiling kinetics.

  • PDF

Aggregate Risk Assessment on Xylene and Ethylbenzene (자일렌과 에틸벤젠에 대한 매체통합위해성평가 연구)

  • Seo, Jung-Kwan;Kim, Taksoo;Kim, Pilje
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.163-171
    • /
    • 2013
  • The aggregate risk assessment on xylene and ethylbenzene was carried out according to the guidance established newly in 2010 with the purpose of providing information for risk management. In human exposure assessment, the results indicated that lower ages were exposed more and that, in the interior space at home, the highest level of human exposure occurred via inhalation. At outdoor spaces, exposures via inhalation and drinking were less than 1%. In human health risk characterization, xylene showed HI(Hazard Index) < 1 in all ages. When reasonable maximum exposure(RME) was applied, HI for young children was 0.64. The HI of ethylbenzene was also below 1(0.02~0.04) in all ages, indicating no potential risk. From this study, it is considered that xylene need to be continous monitoring with interest because this substance may be more sensitive on young age group. In additon, to reduce the uncertainty of the risk assessment, the korean exposure factors on young age group such as infant, children had to be established as soon as possible.

Application of Indoor Air Modelling for Using Health Risk Assessment in Environmental Impact Assessment (환경영향평가에서 건강위해성평가 기법을 이용하기 위한 실내공기 모델링 적용)

  • Yang, Won-Ho;Son, Bu-Soon;Park, Jong-An;Kim, Im-Soon;Han, Sang-Wook
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.211-221
    • /
    • 2001
  • Recognizing interaction between the environment and humans, the EIA(environmental impact assessment) movement has sought to promote more environmentally sound and informed decisions for the sake of human welfare. Therefore, most EIA programs require the consideration of human health impacts. Yet relatively few EIA documents adequately address those impacts. This study was carried out to investigate the role of EIA for reuniting the environment and human health, for preventing and reducing significant health risks, and for improving human health impact assessment by means of risk assessment. Risk assessment consists of 4 components; hazard identification, dose-response assessment, exposure assessment and risk characterization. Since most people spent their times in indoor, indoor air quality modelling can be used in exposure assessment and risk assessment. In this study, indoor $NO_2$ concentration and personal $NO_2$ exposure were estimated by Box Model using mass balance equation and time weighted average, respectively. The estimated indoor $NO_2$ concentration and the personal $NO_2$ exposure were compared by those measured, respectively. Subsequntly, health effect was assessed with these results. Consequently, exposure assessment and risk assessment using indoor air quality model may be considered to be applicable to EIA.

  • PDF

Review of Exposure Assessment Methodology for Future Directions (노출평가 방법론에 대한 과거와 현재, 그리고 미래)

  • Guak, Sooyoung;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.131-137
    • /
    • 2022
  • Public interest has been increasing the focus on the management of exposure to pollutants and the related health effects. This study reviewed exposure assessment methodologies and addressed future directions. Exposure can be assessed by direct (exposure monitoring) or indirect approaches (exposure modelling). Exposure modelling is a cost-effective tool to assess exposure among individuals, but direct personal monitoring provides more accurate exposure data. There are several population exposure models: stochastic human exposure and dose simulation (SHEDS), air pollutants exposure (APEX), and air pollution exposure distributions within adult urban population in Europe (EXPOLIS). A South Korean population exposure model is needed since the resolution of ambient concentrations and time-activity patterns are country specific. Population exposure models could be useful to find the association between exposure to pollutants and adverse health effects in epidemiologic studies. With the advancement of sensor technology and the internet of things (IoT), exposure assessment could be applied in a real-time surveillance system. In the future, environmental health services will be useful to protect and promote human health from exposure to pollutants.

A Study on the Exposure Assessment of Extremely Low Frequency Magnetic Fields (극저주파 자계의 노출 평가에 대한 연구)

  • Kim, Eung-Sik;Kim, Myeong-Hun;Min, Suk-Won
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • This paper addresses the assessment methods used to evaluate the magnetic exposure of a human to ELF EMF (Extremely Low Frequency Electromagnetic Field) which is caused by the process of power delivery from 60 Hz commercial power. These days the main concern is primarily focused on the magnetic field. For the exposure assessment, both numerical studies and laboratory experiments were studied and the results of the two compared for methodological suitability. The numerical analyses employ the Impedance Method (IM), Boundary Element Method (BEM), and Finite Element Method (FEM) and the laboratory experiments used various human phantom models made with conductivities congruent to human organs and then exposed to uniform/non-uniform magnetic fields to produce eddy currents. Under these conditions a number of examples have been evaluated and the reliability assessed to present the pros and cons of each methodology.

Comparison and Analysis on the Assessment Methods of Human Effects of Hand-arm Vibration (수완계 진동에 대한 인체 영향 평가 기법의 비교 분석)

  • 정완섭;권휴상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1361-1364
    • /
    • 2001
  • The recent national contract (Ecotechnopia 21) supported by the ministry of environment puts much significance on new issues for the assessment of human effects arising from vibration and noise exposed to human. This paper focuses only on hand-arm vibration since it has been a major problem in protecting vibration exposure to human. To set up a systematic way of assessing adverse effects of hand-arm vibration, surveys were made on recent international standards and researches related to hand-arm vibration. The measurement and evaluation methods of hand-arm transmitted vibration, the relationship between vibration exposure and effects on health, and the assessment methods of nerve dysfunctions are addressed in this paper. Those methods are linked into a logical way of assessing effects of hand-arm vibration on human. Finally, the current activities and achievements in this work are briefly summarised.

  • PDF

A Study of the Safety Assessment for Combustion Products in the Exposure Human Bodies Rounding Missile Ejection (유도탄 사출시 연소 생성물의 인체 안전성 평가에 관한 연구)

  • Song, Kee Hyeok;Chung, Sung-Hak
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.269-273
    • /
    • 2014
  • The objective of this study is to safety assessment for human body on the guided missile combustion products. This study is to verify the safety assessment when operating the interior missile ejection take on verify the safety of the human body. During the missile ejection of combustion products, this study is analyzed combustion products. Result are accepted NIOSH and KOSHA of the safe guideline, and 6 exposure gas to the specified values 42% (CO), 22% ($CO_2$), not detected (others) are within minimal exposures criteria of the reference value respectively. Contribution of these results supported that interior missile ejection during combustion products may have been ensured human safely. Therefore, the future for improving the environmental safety of the shooting projectile steel plate round, dust collector, ventilation and other facilities is to improve environmental safety and efficient renovated design needed by target focused areas.

Development of Human Exposure and Risk Assessment System for Chemicals in Fish and Fishery Products (수산생물 중 유해물질의 인체 노출 및 위해평가 시스템 개발)

  • Lee, Jaewon;Lee, Seungwoo;Choi, Minkyu;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.454-461
    • /
    • 2021
  • Background: Fish and fishery products (FFPs) unintentionally contaminated with various environmental pollutants are major exposure pathways for humans. To protect human health from the consumption of contaminated FFPs, it is essential to develop a systematic tool for evaluating exposure and risks. Objectives: To regularly, accurately, and quickly evaluate adverse health outcomes due to FFPs contamination, we developed an automated dietary exposure and risk assessment system called HERA (the Human Exposure and Risk Assessment system for chemicals in FFPs). The aim of this study was to develop an overall architecture design and demonstrate the major features of the HERA system. Methods: For the HERA system, the architecture framework consisted of multi-layer stacks from infrastructure to fish exposure and risk assessment layers. To compile different contamination levels and types of seafood consumption datasets, the data models were designed for the classification codes of FFP items, contaminants, and health-based guidance values (HBGVs). A systematic data pipeline for summarizing exposure factors was constructed through down-scaling and preprocessing the 24-hour dietary recalls raw dataset from the Korea National Health and Nutrition Examination Survey (KNAHES). Results: According to the designed data models for the classification codes, we standardized 167 seafood items and 2,741 contaminants. Subsequently, we implemented two major functional workflows: 1) preparation and 2) main process. The HERA system was developed to enable risk assessors to accumulate the concentration databases sustainably and estimate exposure levels for several populations linked to seafood consumption data in KNAHES in a user-friendly manner and in a local PC environment. Conclusions: The HERA system will support policy-makers in making risk management decisions based on a nation-wide risk assessment for FFPs.

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF