• 제목/요약/키워드: Human Errors

검색결과 724건 처리시간 0.022초

A Study on a Trend of Human Error Types Observed in a Simulated Computerized Nuclear Power Plant Control Room

  • Lee, Dhong Ha
    • 대한인간공학회지
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 2013
  • Objective: The aim of this study is to investigate a trend of human error types observed in a series of verification and validation experiments for an Advanced Control Room(ACR) equipped with Lager Display Panel(LDP), Work Station Flat Panel Display(WS FPD), list type Alarm System(AS), Soft Control(SC) and Computerized Procedure System(CPS). Background: Operator behaviors in a fully computerized control room are quite different from those in a traditional hard-wired control room. Operators in an ACR all together monitor plant status and variables through their own interface system such as LDP and WS FPD, are notified of abnormal plant status through their own list type AS, control the plant through their own SC, and follow the structured procedure through their own CPS whereas operators in a traditional control room only separately do their duty directed by their supervisor. Especially the secondary task such as manipulating the user interface of ACR can be an extra burden to all the operators including the supervisor. Method: The Reason's human error classification method was applied to operators' behavioral data collected from a series of verification and validation experiments where operators showed their plant operational behaviors under a couple of harsh scenarios using the ACR simulator. Results: As operators accustomed to the new ACR system, knowledge or rule based mistakes appearing frequently in the early series of experiments decreased drastically in the latest stage of the series. Slip and lapse types of errors were observed throughout the series of experiments. Conclusion: Education and training can be one of the most important factors for the operators accustomed to the traditional control room to be adapted to the new system and to run the ACR successfully. Application: The results of this study implied that knowledge or rule based mistakes can be reduced by training and education but that lapse type errors might be reduced only through innovative improvement in human-system interface design or teamwork culture design including a new leadership style suitable for ACR.

단순 지적과업 중 인간과오 관련 심리생리학적 특성의 변화 (Variation of Psychophysiological Characteristics Related with Human Errors during a Simple Pointing Task)

  • 임현교
    • 한국안전학회지
    • /
    • 제24권3호
    • /
    • pp.71-78
    • /
    • 2009
  • During a learning process, a human being is assumed to experience knowledge-based behaviors, rule-based behaviors, and skill-based behaviors sequentially if Rasmussen was right. If any psycho-physiological symptom to those different levels can be obtained, it can be useful as a measure whether a human being is fully trained and has gotten a skill in his work. Therefore, this study aimed to draw relationships between human performance measures and psycho-physiological measures while committing a computer-simulated pointing task by utilizing the power spectrum technique of EEG data, especially with the ratio of relative beta-to-alpha band power. The result showed that, during correct responses, the ratio came to stabilize as all the performance data went stable. However, response time was not a simple linear function of task difficulty level only, but a joint function of task characteristics as well as behavior levels. Comparing relative band power ratios from errors and correct responses, activated states of one's brain could be explained, and characteristics of the task could understood. To tell that of pointing task, correlations around C3, C4, P3, P4 and 01, 02 area were significant and high in correct response cases whereas most correlation coefficients went down in error cases standing for imbalance of psycho-motor functions. Though task difficulty was the only one factor that could influence on relative band power ratio with statistical significance, it should be comprehended to mean a different way of expression indicating task characteristics since at least error-some situation could be explained with the help of relative band power ratio that absolute band power failed.

해양사고 절감을 위한 웨어러블 센서 기반 항해사 상황인지 인식 기법 개발 (Development of an Algorithm for Wearable sensor-based Situation Awareness Recognition System for Mariners)

  • 황태웅;윤익현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.395-397
    • /
    • 2019
  • 조선기술과 항해장비 기술이 발전하고 있지만 여전히 해양사고는 80%이상이 인적과실에서 비롯되고 있다. 인적과실을 저감시켜 해양사고를 절감시키려는 노력은 항해사를 대상으로 면담이나 설문을 시행하는 등 정성적인 연구방식에 많이 의존하고 있어서 객관적인 인적과실의 실체를 규명하는데 제한이 있다. 본 연구에서는 이 같은 단점을 극복하기 위하여 항해사의 항해 업무 수행을 방해하지 않으며 공간적 제한을 극복할 수 있도록 웨어러블 센서를 활용하여 항해사의 동작을 실측하고 상황인지 여부가 항해 수행 동작에 어떤 영향을 미치는지 구분하고자 한다. Full mission ship handling simulator를 활용하여 항해사가 특정한 시나리오를 수행하는 중에 위험성을 가진 장애물을 발견하기 전과 후의 어떤 행동패턴 변화를 보이는지 측정하였다. 구분된 항해 동작 패턴은 항해 위험 상황에서 적절한 조치를 취하고 있는지 여부를 객관적으로 구분하여 인적과실을 절감하는데 활용될 것으로 기대된다.

  • PDF

화학 산업 시설에서의 인적 오류 분석을 위한 HEP 프로그램 개발 (Development of Human Error Probability Program for Human Error Analysis of Chemical Plants)

  • 고재욱;임차순;박교식
    • 한국가스학회지
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 2002
  • 인적 오류(human error)는 공장설비의 설계, 제작, 건설, 운전, 유지$\cdot$보수의 모든 단계에서 발생할 수 있으며 사고의 대부분이 인적 오류의 영향과 관계되어 있는 것으로 조사되고 있다. 본 연구에서는 현장의 작업자 행동 특성 및 오류 메커니즘을 확인하고, 평가분류 쉬트를 활용하여 공정에서 발생하는 인적 오류를 분석하였다. 또한 ASEP HRA 절차를 이용하여 인적 오류 확률(HEP) 산정 알고리즘을 구축하여 현장에서 쉽게 인적 오류를 분석할 수 있는 ASEP HEP 프로그램을 개발하였다. 이를 이용하여 화학공장에서의 가능한 인적 오류사고를 예방하고 보다 체계적인 인적 오류 방지대책을 수립할 수 있다고 판단된다.

  • PDF

작업장 근로자의 직종별 Human Error 발생요인 연구 (Study of Rate of Human Error by Workers in the Field based on Occupation)

  • 임완희
    • 한국산업정보학회논문지
    • /
    • 제9권4호
    • /
    • pp.56-67
    • /
    • 2004
  • 본 연구는 단순반복작업을 실시하고 있는 작업자(본사, 하청회사)들을 대상으로 Human Error(인간실수)의 실태를 분석하고, 예방대책을 마련하고자 486명을 대상으로 진행되는데 연구결과를 요약하면 다음과 같다. 먼저 Human Error(인간실수)가 가장 많이 발생하는 요인으로서 작업자 요인이 $77.8\%$로 가장 많고, 기계적 요인이 $16.3\%$, 관리적 요인이 $6.0\%$순으로 나타나 Human Error(인간실수)는 주로 단순반복 작업을 수행하는 작업자에 의해 발생하는 것으로 볼 때 기계적 오류에 의한 발생제거보다 작업자들의 자세와 신체적 결함, 장시간 지속작업 등에 기인한 것을 의미한다. 그리고 Human Error(인간실수)가 가장 많이 발생하는 인간정보처리 계통의 에러 요인에서는 동작조작에러가 $46.9\%$로 가장 많았고, 판단기억에러가 $36.4\%$, 인지확인에러가 $16.7\%$순으로 나타나 단순동작의 반복으로 인해 조작과정에서의 에러가 가장 많이 발생하고 있는 것으로 분석되었다. 이상에서 볼 때 전체적으로 자동화의 실행으로 Human Error(인간실수)가 줄어들 것이라는 일반적인 관념을 깨고 아직도 반복적인 단순 반복 작업 공정에서 각 공정이나 기능간 기기보다 작업자의 순간적 오류가 지속적으로 발생하고 있는 현실에서 각 공정에 따른 경력별 순환 보직이나 교환근무 등을 통한 업무 표준화와 능률개선을 위한 현장 점검제 등으로 보다 적극적인 회사차원에서의 지속적인 설비개선과 예산 지원이 요구된다.

  • PDF

Effect of Voxel Size on the Accuracy of Landmark Identification in Cone-Beam Computed Tomography Images

  • Lee, Kyung-Min;Davami, Kamran;Hwang, Hyeon-Shik;Kang, Byung-Cheol
    • Journal of Korean Dental Science
    • /
    • 제12권1호
    • /
    • pp.20-28
    • /
    • 2019
  • Purpose: This study was performed to evaluate the effect of voxel size on the accuracy of landmark identification in cone-beam computed tomography (CBCT) images. Materials and Methods: CBCT images were obtained from 15 dry human skulls with two different voxel sizes; 0.39 mm and 0.10 mm. Three midline landmarks and eight bilateral landmarks were identified by 5 examiners and were recorded as three-dimensional coordinates. In order to compare the accuracy of landmark identification between large and small voxel size images, the difference between best estimate (average value of 5 examiners' measurements) and each examiner's value were calculated and compared between the two images. Result: Landmark identification errors showed a high variability according to the landmarks in case of large voxel size images. The small voxel size images showed small errors in all landmarks. The landmark identification errors were smaller for all landmarks in the small voxel size images than in the large voxel size images. Conclusion: The results of the present study indicate that landmark identification errors could be reduced by using smaller voxel size scan in CBCT images.

Human Reliability Analysis of Soft Control Operations in Nuclear Power Plants: Issues and Perspectives

  • Lee, Seung Jun;Jung, Wondea
    • 대한인간공학회지
    • /
    • 제32권1호
    • /
    • pp.87-96
    • /
    • 2013
  • Objective: The aim of this study is to describe several issues which should be considered in the human reliability analysis of soft control operations in nuclear power plants. Background: The operational environment of advanced main control rooms is totally different from that of conventional control rooms. The soft control is one of the major distinguishable features of the advanced main control rooms. The soft control operations should be analyzed to estimate the effects on human reliability. Method: The literatures, about task analysis, simulation data analysis, and a human reliability analysis method for the soft control, were reviewed. From the review, important issues for the human reliability analysis of the soft control were raised. Results: The results of task and simulation data analysis showed that the soft control characteristics could have large effect on human reliability and they should be considered in the human reliability analysis of the soft control operations. Conclusion: The soft control may affect human error and performance of operators. The issues described in this paper should be considered in the human reliability method for the advanced main control rooms. Application: The results of the soft control operation analysis might help to design more efficient interface and education/training program for preventing human errors. The described issues might help to develop a human reliability analysis method for soft control operations.

Human Error Analysis Technique and Its Application to Marine Accidents

  • Na, Seong;Kim, Hong-Tae;Kim, Hye-Jin;Ha, Wook-Hyun
    • 한국항해항만학회지
    • /
    • 제34권2호
    • /
    • pp.145-152
    • /
    • 2010
  • The management of safety at sea is based on a set of internationally accepted regulations and codes, governing or guiding the design and operation of ships. The regulations most directly concerned with human safety and protection of the environment are, in general, agreed internationally through the International Maritime Organization(IMO). IMO has continuously dealt with safety problems and, recognized that the human element is a key factor in both safety and pollution prevention issues(IMO, 2010). This paper proposes a human error analysis methodology which is based on the human error taxonomy and theories (SHELL model, GEMS model and etc.) that were discussed in the IMO guidelines for the investigation of human factors in marine casualties and incidents. In this paper, a cognitive process model, a human error analysis technique and a marine accident causal chains focused on human factors are discussed, and towing vessel collision accidents are analyzed as a case study in order to examine the applicability of the human error analysis technique to marine accidents. Also human errors related to those towing vessel collision accidents and their underlying factors are discussed in detail.

반도체 회사의 인적 오류 예방 활동 사례 및 검토 (A Review on the Field Activities for the Human Error Prevention in a Semiconductor Company)

  • 이용희;이용희;류재승
    • 대한인간공학회지
    • /
    • 제30권1호
    • /
    • pp.117-125
    • /
    • 2011
  • While human error happens repeatedly in the semiconductor industry in Korea, which has brought a tremendous loss from manpower, welfare etc., there are limitations to human error prevention activities. When a semiconductor company introduces new machines and facilities from Japan or Germany, the companies often do not consider human factors in the design. Also, semiconductor companies are so occupied with promoting increased productivity, their attention to human errors has been pushed aside. Negative aspects of technical exchange associated with safety management are one aspect of the industry's nature. A semiconductor company recently began acknowledging on the back of TQM(Total Quality Management) that human error has a decisive effect on the safety. There are a number of uncontrollable and hard to handle event sets because the nature of these events with a human error may often be threatened or very intensive. It is strongly required that systemic studies should be performed to grasp the whole picture of a current situation for hazard factors. This study aims to examine the human error approach through the case of human error prevention field activities in a semiconductor industry compared with the activities and experience in nuclear power plants.

선박운항시스템에 있어서 인적요소(Human Factors)의 조사방법론에 관한 고찰 (A Study on the Methodology for Analysing Human Factors in Ship Operating System)

  • 황병호;이종인
    • 한국항해학회지
    • /
    • 제24권1호
    • /
    • pp.23-34
    • /
    • 2000
  • The human error or error involved with human is still the major portion of the causes of marine casualties and attracting a great concern in ship operation. However, there are not so many researches conducted to investigate or develop methodologies for analyzing such causes of human error in maritime industry, which may be caused by the variety of factors affecting the performance of ship operation and the characteristics of human being. This paper aims to study the methodologies used in investigating human factors or errors in maritime field through the investigation of researches performed so far. The methodology for human factors can be usually classified into one of three types; descriptive studies, experimental research and evaluation research. Also there are many different kinds of applied researches for some specific subjects. Prior to the investigation of the root cause of marine accident related with human error, clear concept of the human factors and systematic taxonomy shall be established. Moreover, it is very important considerations in case of casualty inspection on human factors that the inspector on the accident shall have adequate knowledges, understandings on the concept of human factors including the way of research more than those of methodologies and techniques.

  • PDF