• Title/Summary/Keyword: Human Epidermal Keratinocytes

Search Result 71, Processing Time 0.028 seconds

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.

Construction of Chimeric Human Epidermal Growth Factor Containing Short Collagen-Binding Domain Moieties for Use as a Wound Tissue Healing Agent

  • Kim, Dong-Gyun;Kim, Eun-Young;Kim, Yu-Ri;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2015
  • Among the various human growth factors, epidermal growth factor (hEGF, consisting of 53 amino acids) has various effects on cell regeneration, stimulation of proliferation, migration of keratinocytes, formation of granulation tissues, and stimulation of fibroblast motility, which are important for wound healing. Owing to their multiple activities, EGFs are used as pharmaceutical and cosmetic agents. However, their low productivity, limited target specificity, and short half-life inhibit their application as therapeutic agents. To overcome these obstacles, we fused the collagen-binding domain (CBD) of Vibrio mimicus metalloprotease to EGF protein. About 18 or 12 amino acids (aa) (of the 33 total amino acids), which were essential for collagen-binding activity, were combined with the N- and C-termini of EGF. We constructed, expressed, and purified EGF (53 aa)-CBD (18 aa), EGF (53 aa)-CBD (12 aa), CBD (18 aa)-EGF (53 aa), and CBD (12 aa)-EGF (53 aa). These purified recombinant proteins increased the numbers of cells in treated specimens compared with non-treated specimens and control hEGF samples. The collagen-binding activities were also evaluated. Furthermore, CBD-hybridized hEGF induced phosphorylation of the EGF receptor. These results suggested that these fusion proteins could be applicable as small therapeutic agents in wound tissue healing.

Application of Human Dermal Fibroblast and Keratinocyte on Allogenic Dermis(AlloDerm®) (동종진피에 사람진피 섬유모세포와 각질세포를 적용한 인공피부의 실험적 제작)

  • Oh, Jung Chul;Lim, Yeung Kook;Jeong, Jae Ho
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.601-605
    • /
    • 2006
  • Purpose: Large skin defect by various causes, should be covered by autologous skin graft. But, the donor site of autologous skin graft is limited and leaves permanent donor scar and contracture. There have been our trial to engineer artificial skin using allogenic dermis (AlloDerm) with basement membrane. Methods: Dermal and epidermal layer were separated by immersing in dipase solution for 30 minutes, and the separated layers were treated with 0.05% trypsin for 10 minutes. And then each layer was cultivated to fibroblasts and keratinocytes on a culture medium. Fibroblasts were first penetrated into basement membrane of allogenic dermis facing down, then allogenic dermis was flipped over to face up and keratinocytes were transplanted to allogenic dermis. Results: Observing artificial skin fabricated in vitro, we found following: 1) The artificial skin opened in air for 5 days formed epidermal layer. In dermal layer, fibroblast was distributed evenly among all. 2) The artificial skin opened in air for 30 days formed thicker and thicker, and it formed basement membrane, spinous and granular layers. PAS stain to confirm existence of basement membrane showed positive reaction. 3) Cytokeratin 10 stain to confirm the formation of epidermal layer showed positive reaction. 4) The formation of thick keratin, lamellar body and desmosome similar to human skin were observed in result of an electron micrograph. Conclusion: As a result of research, the structure seen in normal skin such as rete ridge, is found in reproduced artificial skin. This type of artificial skin can be used as a useful model for investigating skin disease and for clinical application also.

Identification of Antioxidant Activities and Stimulation of Human Keratinocytes Differentiation Effects of Syzygium claviflorum Extract (Syzygium claviflorum 추출물의 항산화 활성 및 각질형성세포 분화유도 효과)

  • Gayeon Seo;Jiyeon Moon;Yukyung Park;Juyeong Kim;Hoyong Hyun;Beomsu Jeong;Thet Thet Mar Win;Thant Zaw Win;Sangho Choi;Sangmi Eum;Dongwon Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • We validated the physiological activity of Syzygium claviflorum (Roxb.) Wall. ex A.M. Cowan & Cowan (S. claviflorum) extracts (leaves, stems, fruits, and flowers) as a cosmetic ingredient. Firstly, S. claviflorum extracts removed over 80% of free radicals at various concentrations in antioxidant experiments using the DPPH and ABTS assay. In cytotoxicity experiments using human epidermal keratinocytes, S. claviflorum extracts showed low cytotoxicity. In addition, S. claviflorum extracts significantly increased the expression of keratin (KRT)1, KRT2, KRT9, KRT10, which are differentiation markers of keratinocytes, as well as genes involved in the maintenance of skin barrier function, including involucrin (IVL), loricrin (LOR), filaggrin (FLG), and claudin1 (CLDN1). In particular, the expression of FLG protein, inhibited by interleukin (IL)-4/IL-13 in atopic dermatitis, was restored by S. claviflorum extracts in in vitro experiments. Therefore, S. claviflorum extracts with excellent antioxidant efficacy and skin barrier improvement function will be useful materials for the development of future atopic dermatitis treatments and cosmetics.

Detection of Protein Kinase C Isoenzymes in the Growth of Human Epidermal Keratinocytes by Growth Factors (Growth Factor를 처리한 피부상피세포로부터 Protein Kinase C Isoenzyme의 검출)

  • Eun-Young Joo;Nam-Woo Kim
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • Subconfluent neonatal human epidermal keratinocytes were treated with a concentration 200 ng/$m\ell$ of human recombinant epidermal growth factor (hrEGF), human recombinant insulin-like growth factor-1 (hrIGF-1), and with a combination of hrEGF and hrIGF-1. Cytoplasmic and membrane-associated proteins were extracted and assayed. Proteins were separated by SDS-PAGE, and subjected to the western blot analysis. In the cytoplasmic fraction, the PKC concentration of keratinocyte treated with hrIGF-1 was higher than the control group, but the concentration of control group was the highest than the others in the membrane fraction. In the cytoplasmic fraction, EGF stimulated PKC-$\beta$II, -$\delta$, -$\theta$, and also stimulated PKC-$\alpha$, -$\beta$I, -$\delta$, -$\Im$ and -$\theta$ in the membrane fraction. IGF-1 stimulated PKC-$\beta$I, -$\Im$ and -$\theta$ in the cytoplasmic, PKC-$\alpha$, -$\beta$I, -$\delta$, -$\Im$, - $\varepsilon$ and -$\theta$ in the membrane. In the cells treated with a combination of EGF and IGF-1, PKC-$\alpha$, -$\beta$I, -$\Im$ and -$\theta$ in the cytoplasmic fraction, PKC-$\alpha$, -$\delta$, -$\Im$, -$\varepsilon$ and -$\theta$ in the membrane fraction were stimulated.

  • PDF

Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

  • Bae, Il-Hong;Lee, Sung Hoon;Oh, Soojung;Choi, Hyeongwon;Marinho, Paulo A.;Yoo, Jae Won;Ko, Jae Young;Lee, Eun-Soo;Lee, Tae Ryong;Lee, Chang Seok;Kim, Dae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma ($PPAR-{\gamma}$), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of $PPAR-{\gamma}$ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of $PPAR-{\gamma}$. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

Green Tea Root Is a Potential Natural Surfactant and Is Protective against the Detrimental Stimulant PM2.5 in Human Normal Epidermal Keratinocytes (녹차뿌리 특화 사포닌의 천연 계면 활성력을 이용한 새로운 안티폴루션 기작 연구)

  • Na, Hye-Won;Lee, Yeongran;Park, Jun Seong;Lee, Tae Ryoung;Kim, Hyoung-June
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • Green tea (Camellia sinensis L.) has been widely explored for its medicinal applications. However, most of the studies had targeted the green tea leaf, while other parts remained unexplored. In this study, protective effect of green tea root extract on Normal Human Epidermal Keratinocytes (NHEKs) against the damage induced by an external stimulant (PM2.5) was confirmed. Thirty-year-old green tea root samples were collected from Amorepacific's Dolsongi tea field and green tea root extract was prepared with 70% ethanol. Total crude saponin content in green tea root extract was 54%, which is much higher than that in ginseng extract. Our results suggest that green tea root extract can be used as a natural surfactant in cosmetics. For evaluating its protective effect against the damage induced by PM2.5, IL-36G was used as a biomarker. IL-36G mRNA expression level increased remarkable upon PM2.5 treatment in NHEKs. Moreover, IL-36G was recently reported to be expressed in psoriasis lesions. Results showed significant decrease of IL-36G expression by treatment of green tea root extract. In conclusion, thirty-year-old green tea root extract can be used as a natural surfactant with a high saponin content and may have protective effect against the damage induced by PM2.5.

Roles of Fisetin on Skin Barrier Function and Anti-aging in Epidermal Keratinocyte (각질형성세포에서 Fisetin의 피부장벽 기능 개선 및 항노화 효능 검증)

  • Lee, Kyung-Ha;Kim, Wanil
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.391-401
    • /
    • 2020
  • Flavonoids are polyphenolic compounds derived from plants metabolites and are known to be capable of controlling various human physiological functions. Among them, fisetin (3,3', 3', 7-tetrahydroxyflavone) is found in various fruits and vegetables, and it has been recently known to restore the function of certain tissues through senolytic activity. In this study, targeting human epidermal keratinocytes, control of skin barrier genes and antioxidant efficacy of fisetin were analyzed. Fisetin increased the activity of telomerase and decreased the expression of CDKN1B. In addition, it increased the expression of KRT1, FLG, IVL, and DSP, which are main genes that make up the skin barrier. The fisetin also increased the expression of CerS3 and CerS4 genes, which are forms of ceramide synthases. These results show that the efficacy of fisetin is not limited as senolytics but is also involved in various physiological regulation of human keratinocytes. Therefore, we consider that fisetin could be used as an active ingredient in cosmetics and pharmaceuticals.

Acidic pH-activated $Cl^-$ Current and Intracellular $Ca^{2+}$ Response in Human Keratinocytes

  • Park, Su-Jung;Choi, Won-Woo;Kwon, Oh-Sang;Chung, Jin-Ho;Eun, Hee-Chul;Earm, Young-E;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • The layers of keratinocytes form an acid mantle on the surface of the skin. Herein, we investigated the effects of acidic pH on the membrane current and $[Ca^{2+}]_c$ of human primary keratinocytes from foreskins and human keratinocyte cell line (HaCaT). Acidic extracellular pH ($pH_e{\leq}5.5$) activated outwardly rectifying $Cl^-$ current ($I_{Cl,pH}$) with slow kinetics of voltage-dependent activation. $I_{Cl,pH}$ was potently inhibited by an anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS, 73.5% inhibition at 1${\mu}$M). $I_{Cl,pH}$ became more sensitive to $pH_e$ by raising temperature from $24^{circ}C$ to $37^{circ}C$. HaCaT cells also expressed $Ca^{2+}$-activated $Cl^-$ current ($I_{Cl,Ca}$), and the amplitude of $I_{Cl,Ca}$ was increased by relatively weak acidic $pH_e$ (7.0 and 6.8). Interestingly, the acidic $pH_e$ (5.0) also induced a sharp increase in the intracellular [$Ca^{2+}$] (${\triangle}[Ca^{2+}]_{acid}$) of HaCaT cells. The ${\triangle}[Ca^{2+}]_{acid}$ was independent of extracellular $Ca^{2+}$, and was abolished by the pretreatment with PLC inhibitor, U73122. In primary human keratinocytes, 5 out of 28 tested cells showed ${\triangle}[Ca^{2+}]_{acid}$. In summary, we found $I_{Cl,pH}$ and ${\triangle}[Ca^{2+}]_{acid}$ in human keratinocytes, and these ionic signals might have implication in pathophysiological responses and differentiation of epidermal keratinocytes.

Calcium-induced Human Keratinocytes(HaCaT) Differentiation Requires Protein Kinase B Activation in Phosphatidylinositol 3-Kinase-dependent Manner

  • Piao, Longzhen;Shin, Sang-Hee;Yang, Keum-Jin;Park, Ji-Soo;Shin, Eul-Soon;Li, Yu-Wen;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Lee, Choong-Jae;Hur, Gang-Min;Seok, Jeong-Ho;Kim, Ju-Duck
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2006
  • The survival and growth of epithelial cells depends on adhesion to the extracellular matrix. An adhesion signal may regulate the initiation of differentiation, since epidermal keratinocytes differentiate as they leave the basement membrane. A metabolically dead cornified cell envelope is the end point of epidermal differentiation so that this process may be viewed as a specialized form of programmed cell death. In order to investigate the precise cellular signaling events loading to terminal differentiation of keratinocytes, we have utilized HaCaT cells to monitor the biological consequences of $Ca^{2+}$ stimulation and numerous downstream signaling pathways, including activation of the extracellular signal-regulated protein kinase(ERK) pathway and activation of phosphatidylinositol 3-kinase(PI3K). The results presented in this study show that $Ca^{2+}$ function as potent agents for the differentiation of HaCaT keratinocytes, and this differentiation depends or the activation of ERK, Protein kinase B(PKB) and p70 ribosomal protein S6 kinase(p70S6K). Finally, the results show that the expression of Activator protein 1(AP-1; c-Jun and c-Fos) increased following $Ca^{2+}$-mediated differentiation of HaCaT cells, suggesting that ERK-mediated AP-1 expression is critical for initiating the terminal differentiation of keratinocytes.