• Title/Summary/Keyword: Human DNA

Search Result 2,845, Processing Time 0.032 seconds

Molecular Cloning and Expression of Human Poly (ADP-ribose) Synthetase cDNA in E. Coli (인간 Poly(ADP-ribose) Synthetase cDNA의 클로닝 및 대장균에서의 발현)

  • 이성용;김완주;이태성;박상대;이정섭;박종군
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.248-256
    • /
    • 1996
  • The present study was performed to clone and express human poly (ADP-ribose) synthetase (PARS) cDNA in E coli. For these purposes, the CDNA for human poly (ADP-ribose) synthetase, encoding the entire protein, was cloned into pGEM-7Zf(+). The resulting recombinant plasmid pPARS6.1 was restriction enzyme mapped and its identity was confirmed by Southern blot analysis. The pPARS6. 1 contained full-length CDNA of human PARS and the nudeotide sequences were identical with those reported previously. The recombinant protein which migrated as a unique 120 kDa band on 10% SDS-polyacrylamide gels, was identified as PARS by Southwestern blots using nick-translated DNA probes and by activity gels and activity blots using 32 P-NAD as a substrate for poly (ADP-ribose) synthetase (PARS). The signals corresponding to 120 and 98 kDa proteins were obtained following IPTG (0.4 mM) induction of the PARS cDNA cloned into Xba I-digested pGEM-7Zf(+) vector. Nonspecific signals corresponding to 45 and 38 kDa proteins were also shown in both IPTG-induced and noninduced cells. The nonspecific proteins may be products of incomplete translation or proteolytic products of intact PARS.

  • PDF

Mitochondrial DNA Analysis of Human Skeletal Remains Excavated from Myungam-ri site in Asan, Korea (아산시 명암리 출토 인골의 미토콘드리아 DNA 분석)

  • Kim, Yun-Ji;Kim, Sue-Hoon;Cho, Eun-Min;Lee, Jeong-won
    • 보존과학연구
    • /
    • s.36
    • /
    • pp.33-48
    • /
    • 2015
  • In this study, ancient DNA analyses were carried out on the human skeletal remains from a historical cemetery site in Myeongam-ri, Asan, Korea. Human remains of 27 individuals out of tombs from the Goryeo to Joseon Dynasty were selected for the analysis of this study. In order to identify the genealogy of the population and traditional burial pattern of the cemetery, we conducted comparative analyses of the hyper variable regions (HVRs) in mitochondrial DNA (mtDNA) of each sample. We sequenced 9 segmental amplicons of HVRs and assigned relevant haplogroups according to the sequence polymorphism on the basis of the known mtDNA database. As a result, we were analyses 18 human remains of 27 individuals and result of amelogenin analysis were only 4 samples.

  • PDF

Computer-based screening for novel inhibitors of human topoisomerase I with FlexiDock docking protocol

  • Choi, In-Hee;Kim, Choon-Mi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.315.1-315.1
    • /
    • 2002
  • DNA topoisomerases I (topo I) and II are essential enzymes that relax DNA supercoiling and relieve torsional strain during DNA processing. including replication. transcription. and repair. Topo I relaxes DNA by cleaving one strand of DNA by attacking a backbone phosphale with a catalytic lyrosine (Tyr723. human topo I). This enzyme has recently been investigated as a new target for antineoplastic drugs. Inhibitors to the enzyme intercalate between the DNA base pairs. interfering religation of cleaved DNA, therefore inhibit the activity of topo I. (omitted)

  • PDF

Flexible docking of novel antitumor agents into human topoisomerase I-DNA complex with FlexiDock

  • Woo , Su-Na;Kim, Choon-Mi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.314.2-314.2
    • /
    • 2002
  • DNA topoisomerases catalyze changes in DNA topology through cycles of transient DNA strand breakage and religation. During this process. the active site tyrosine in human DNA topoisomerase Ⅰ(Top Ⅰ) becomes covalently linked to the 3'-ends of a single-stranded nick in the DNA duplex, Stabilization of the Top Ⅰ-DNA cleavable complex is the common initial event leading to the cytotoxicity of top 1 inhibitors. (omitted)

  • PDF

Hypomethvlation of DNA with 5-Azacvtidine Alters Chromosome Replication Patterns in Cultured Human Lvmphocvtes (배양 인체 백혈구의 chromosome replication에 미치는 DNA hypomethylation의 영향)

  • 원태웅;이석우김우갑
    • The Korean Journal of Zoology
    • /
    • v.37 no.4
    • /
    • pp.437-477
    • /
    • 1994
  • The DNA replication of human Iyrnphocvtes was studied using Bromodeo3fyuridine incorporation. The characteristic patterns of dvnamlc banding were analysed. Human chromosomal ONA was synthesized in a segmental but highly coordinated fashion. Each chromosome replicates according to its innate pattern of chromosome structure (bandinsl. R-positive bands are demonstrated as the initiation sites of DNA synthesis, and G-bnads initiate replication after it has been completed in the autosomal R-bands. Many researchers demonstrated that developmental or induced methvlation of DNA can inactivate the associated gene loci. Such DNA methylation can be reversed and specific genes reactivated by treatment with 5-azacvtidine. We treated the hvpomethvlating agent 5-azacvtidine and tested for changes of DNA replication pattern. Treatment with 5-azacytidine causes an advance in the time of replication. These observed changes in timing of replication suggest that DNA methvlation may modify regional groups of genes in concert.

  • PDF

Protective Effect of Electrolyzed Reduced Water on the Paraquat-induced Oxidative Damage of Human Lymphocyte DNA (Paraquat에 의한 사람 임파구 DNA 손상에 대한 환원전리수의 보호효과)

  • Park, Eun-Ju;Ryoo, Kun-Kul;Lee, Yoon-Bae;Lee, Jong-Kwon;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Electrolyzed reduced water (ERW), showing extremely negative oxidation-reduction potential, was used to investigate the effects of paraquat-induced damages on DNA from human lymphocyte. The effect of ERW on paraquat-induced oxidative DNA damage in human lymphocytes was evaluated by Comet assay (single-cell gel electrophoresis) quantified as percentage fluorescence in tail. Comet assay has been used widely to assess the level of the DNA damage in individual cells. Lymphocytes were oxidatively challenged with various concentrations of paraquat for 30 min at $37^{\circ}C$, and were then treated with electrolyzed reduced water for 30 min. The oxidative DNA damage by paraquat, as indicated by the fluorescent tail in DNA, increased in a dose-dependent manner. However, oxidative damage of the DNA was almost completely prevented upon treatment with electrolyzed reduced water.

The Effect of EGF on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts (치주인대세포 및 치은섬유아세포의 증식능에 대한 Epidermal growth factor의 영향)

  • Kim, Seon-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.841-858
    • /
    • 1996
  • Epidermal growth factor(EGF) is one of polypeptide growth factors. EGF has been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purposes of this study is to evaluate the effects of EGF on the human periodontal ligament cells and human gingival fibroblast cells that promote regeneration of periodntal tissue. The mitogenic effects of epidermal growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'-deoxy-uridine into DNA of the cells in a dose dependent manner. The prepared cells were the primary cultured gingival fibroblast and periodontal ligament cells from humans, the fourth or sixth subpassages were used in the experiments. Cells were seeded in DMEM containing 10% FBS. 1, 10, 50, 100, $200{\eta}g/ml$ and epidermal growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10\{mu}l/200{\mu}l$ 5-Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows : The DNA synthetic activity of human gingival fibroblasts were increased dose dependently by epidermal growth factor at 24 hours, 48 hours and 72 hours. The mitogenic effects were similar at the 24 and 48 hours of epidermal growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells were increased dose dependently by epidermal growth factor at 24 hours but the DNA synthetic activity decreased at $200{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were observed at the 48 hours application of epidermal growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 24, 72 hours than at 48 hours the application of epidermal growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the epidermal growth factor. In conclusion, epidermal growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF

Folate and Homocysteine Levels during Pregnancy affect DNA Methylation in Human Placenta (임산부의 혈중 엽산과 호모시스틴 수준이 태반세포의 DNA 메틸화에 미치는 영향)

  • Park, Bo-Hyun;Kim, Young-Ju;Lee, Hwa-Young;Ha, Eun-Hee;Min, Jung-Won;Park, Jong-Soon;Park, Hye-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2005
  • Objectives : DNA methylation is one of the best characterized epigenetic mechanisms that play a regulatory role in genome programming and imprinting during embryogenesis. In this present study, we investigated the association between DNA methylation in the human placenta and the maternal folate and homocysteine concentrations on the Methylenetetrahydrofolatereductase (MTHFR) genetic polymorphism during pregnancy. Methods : We investigated 107 pregnant women who visited Ewha Woman's University Hospital for prenatal care during their $24{\sim}28$ weeks-period of gestation. During the second trimester, we measured the serum homocysteine and folate concentrations . The MTHFR 677 genetic polymorphism was determine by performing PCR-RFLP assay. The expression of DNA methylation in the human placentas was estimated by using immunohistochemistry method. Results : Serum folate was negatively correlated with the serum homocysteine concentration for all the MTHFR genotypes. We found positive correlation between the folate concentrations and the DNA methylation in the human placenta (p<0.05). An increasing concentration of homocysteine was associated with reduced DNA methylation in the human placenta. The coefficient value was -2.03 (-3.77, -0.29) on the regression model (p<0.05). Conclusion : These findings suggest that the maternal folate and homocysteine levels along with the MTHFR 677 genetic polymorphism during pregnancy affect the DNA methylation in the human placenta.

DNA Transfection in SK-N-BE(2)C Human Neuroblastoma Cells

  • Lee, Myung-Koo
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.155-157
    • /
    • 1993
  • DNA transfection conditions were investigated by calcium phosphate-DNA co-precipitation in SK-N-BE(2)C human neuroblastoma cells. The DNA plasmid of TH2400CAT was used in which rat tyrosine hydroxylase gene was inserted into chloramphenicol acetyltransferase reporter gent. The transfection efficiency was 25-30% and the method was simple and reproducible. So, the method will be a good tool for transient transfection analysis.

  • PDF

Archaeogenetic Research of Excavated Human Bones from the Ancient Tombs (분묘 유적지 출토 인골에 대한 고고유전학 연구)

  • Jee, Sang Hyun;Chung, Yong Jae;Seo, Min Seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.1
    • /
    • pp.99-108
    • /
    • 2008
  • The paleogenetic analysis has become an increasingly important subject of archaeological, anthropological, biological as well as public interest. Recently, scientific research for human skeletal remains was more activated because of increasing awareness of the valuable archaeological information by the ancient DNA analysis. State of preservation of organic remains vary in different soil and burying environmental condition. Almost all available tissue disappear to analysis ancient DNA of bone in acidic soil caused by climate and geological features in Korea. Many preserved human remains excavated in the 'Heogwakmyo'(limelayered tomb of Chosun Dynasty Period) is able to explain through the relationship between burial conditions and bone survival form the burial method and ceremony. Ancient DNA analysis of excavated human bone form ancient tomb requires to remove contaminants such as microorganism's DNA and soil components that affect authentic results. Particularly, contamination control of contemporary human DNA is major serious problem and should verified by criteria of authenticity. In order to understand migration and culture of ancient population, when possible, ancient DNA studies needs to go abreast both radiocarbon and stable isotope studies because the dietary inferences will suggest ancient subsistence and settlement patterns. Also when the paleogenetic research supported with the arts and humanities research such as physical anthropology and archaeology, more valuable ancient genetic information is providing a unique results about evolutionary and population genetics studies to reconstruct the past.