• Title/Summary/Keyword: Human Body Motion

Search Result 417, Processing Time 0.028 seconds

Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion (보행 중 인체 슬관절의 3차원 접촉 모델 개발)

  • Kim, Hyo-Shin;Park, Seong-Jin;Mun, Joung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

Research for the influence of body movement on the space occupation - Focusing on the GSD - (몸 움직임이 공간구축에 미친 영향에 관한 연구 - 감성공간디자인(GSD)를 중심으로 -)

  • Kim, Yeon-Joung;Oh, Young-Keun
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.124-132
    • /
    • 2009
  • Recently, 'Emotion' has attracted public attention socially and continuously in the fields such as construction, environment, design and products. Also, phenomenological concept of space through the physique in the viewpoint of the human-oriented aspect, namely, body, has been managed as a planned measure suitable for a new era and space. In this study, the author examined and analyzed the verbs and emotional vocabulary about the human body's behavior. The phenomenological space conception through body, i.e, flesh in this human centered point of view is being treated as the suitable planning measure on the new era and space. Though the epochal issue for Emotion is being attempted in many ways in various field such as product and marketing, the approach through the relationship between human and space. Therefore, we would like to see how the Emotion related to the movement that occurs in the space by analyzing the human body movement which is the subject of experiencing the space experimentally and research the characteristic of Emotion and space movement. SPSS 12.0 was used for the analysis to perform the analysis of basic statistics and Factor Analysis, and then to analyze the characteristic and emotional attribute for the experimental analysis. Comparing the activity for the 2 groups' behavior through the analyzed result with the test, active behavior was found to be higher than inactive behavior in the emotional value, and their bodies' motion showed averagely positive value in the emotional aspect; their bodies' motion was presented differently according to the attributes and amount of the people who would experience a specific space. However, the author found that affirmative and active behavior showed emotional aspect more than inactive behavior.

An Analysis of Human Motions using Video Image Processing (화상 처리기법에 의한 인체 동작분석)

  • Lee, Geun-Bu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • The object of this research is to develop an interactive computerized graphic program for graphic output of velocity, acceleration and motion range of body task reference point. Human motions can be reproduced by scanning (rate = 1/60) the vidicon image, at same time, C.O.G of body segment group, and the results are stored in an Apple II P.C. memory. The results of this study can he exteneded to simulation and reproduction of human motions for optimal task design.

  • PDF

A Study on HCI Application based on Human Body Motion in Flight Game (활강 게임의 인체동작 기반 HCI 적용 연구)

  • Lim, Dohee;Baek, Jongwoo;Choi, Jiyoung;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.320-322
    • /
    • 2021
  • With the development of wireless Internet technology and the expansion of the game market, various forms of games are being developed that are mounted on various platforms, including mobile platforms. In this environment, ensuring the immersion of the game user's perspective will secure the game's competitiveness, so it is necessary to increase the immersion by satisfying each area presented by the Human Computer Interaction (HCI) theory. To this end, this high school implemented downhill games and experimented with kiosks by applying an interface that recognizes the human body's movements as a way to secure freedom and immersion of game users.

  • PDF

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.

Control Algorithm of the Lower-limb Powered Exoskeleton Robot using an Intention of the Human Motion from Muscle (인체근육의 동작의도를 이용한 하지 근력증강형 외골격 로봇의 제어 알고리즘)

  • Lee, Hee-Don;Kim, Wan-Soo;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2017
  • This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.

Signal processing of accelerometers for motion capture of human body (인체 동작 인식을 위한 가속도 센서의 신호 처리)

  • Lee, Ji-Hong;Ha, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.961-968
    • /
    • 1999
  • In this paper we handle a system that transform sensor data to sensor information. Sensor informations from redundant accelerometers are manipulated to represent the configuration of objects carrying sensors. Basic sensor unit of the proposed systme is composed of 3 accelerometers that are aligned along x-y-z coordination axes of motion. To refine the sensor information, at first the sensor data are fused by geometrical optimization to reduce the variance of sensor information. To overcome the error caused from inexact alignment of each sensor to the coordination system, we propose a calibration technique that identifies the transformation between the coordinate axes and real sensor axes. The calibration technique make the sensor information approach real value. Also, we propose a technique that decomposes the accelerometer data into motion acceleration component and gravity acceleration component so that we can get more exact configuration of objects than in the case of raw sensor data. A set of experimental results are given to show the usefulness of the proposed method as well as the experiments in which the proposed techniques are applied to human body motion capture.

  • PDF

Distribution of Clothing Pressure under the Brassiere (브래지어 착용시 흥부에서의 의복압 분포)

  • 이미진;김양원
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.2
    • /
    • pp.178-185
    • /
    • 2002
  • The purpose of this study was to measure distribution of clothing pressure on breast in brassiere according to body shape and motion, and the position of hook-and-eye on brassiere, and to get basic data for comfortable brassiere design. Clothing pressure was measured from 8 female subjects under wearing trials in climatic chamber. When brassiere was tied together with inner or outer hook-and-eye, clothing pressure under the condition were 10.2 and 9.6 gf/cm², respectively. With the degree between main body and arms increased from 0° to 45° and 90°to the front, clothing pressure decreased from 10.2 to 9.6 gf/cm², and then increased to 10.4 gf/cm² When the decree was increased from 45° to 70° to the flank, the pressure increased from 9.3 to 10.6 gf/cm². Fat body shape recorded 10.8 gf/cm², and lean body shape recorded 9.5 gf/cm² of clothing pressure by wearing brassiere. Clothing pressures of brassiere were 7.8g gf/cm² in front, 9.5 gf/cm² in side, 12.8 gf/cm² in the back side. Therefore, clothing pressure of brassiere was influenced to the greater extent by body shape and measuring points on human body than by the position of hook-and-eye and body motion.

  • PDF

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

A Survey of Korean Firefighters Regarding their Satisfaction with Protective Clothing (한국 소방용 방화복에 대한 만족도 조사)

  • Han, Sul-Ah;Nam, Yun-Ja;Choi, Young-Lim
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.166-175
    • /
    • 2008
  • For the structural firefighting protective clothing, it can show a synergy effect when it satisfies smart fabric to block off a harmful environmental element and ergonomics design that apply range of motion of human body and appropriate size system. There are various standards about the structural firefighting protective clothing, but it's difficult to find a rule about movement suitability because the performance of the material holds a lot of the rules. Therefore, the purpose of this study is to propose a scheme to evaluate the current structural firefighting protective clothing and to improve movement suitability by research on the actual condition. For this, the survey about wearer acceptability scale on design and size and about improvement requirements was executed gathering firefighters' opinion. Questionnaire was composed with 23 items about satisfaction on current structural firefighting protective clothing, body suitability, movement suitability, improvement requirement and subjective information. As a results, Korean firefighters demand ergonomics design of structural firefighting protective clothing which to minimize restriction of body movement and to maximize body suitability.