• Title/Summary/Keyword: Hull optimization

Search Result 159, Processing Time 0.024 seconds

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

Shell platings manufacturing M/H inference and comparison using Artificial Neural Network and Gentic Programming (인공신경망과 유전적 프로그래밍을 이용한 선체 곡가공 M/H 추론 및 비교)

  • Shin, Yong-Wook;Ha, Duk-Ki;Jo, Moon-Hee;Kim, Su-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.163-166
    • /
    • 2003
  • Hull form designers have to design a ship with satisfying an economical, technical and environmental demand. When it is concerned by a technical and environmental demand, there will be a economical demand left to criticize optimization. In this case, there were used to be requirements which needs to meet only a best performance not concerning about input of Human resource. Life cycle's cost contains building cost and operation cost so that now we need to check Man Hour cost in building a ship. This research shows a correlation between hull form information, i.e. curvature, length, breadth and thickness of surface and Man Hour of the Shell plating manufacture with using Artificial Neural Network and Gentic Programming. This study will support to classify initial work, to have a high assumption possible through predicting a Man Hour and to provide a guide book to infer a building cost and a economical optimization hull form.

  • PDF

A Study on Hull-Form Design for Ships Operated at Two Speeds (두 가지 속도에서 운항하는 선박의 형상설계에 관한 연구)

  • Kim, Tae Hoon;Choi, Hee Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.467-474
    • /
    • 2018
  • The purpose of this study is related to automatic hull-form design for ships operating at two speeds. Research was conducted using a series 60 ($C_B=0.6$) ship as a target, which has the most basic ship hull-form. Hull-form development was pursued from the viewpoint of improving resistance performance. In particular, automatic hull-form design for a ship was performed to improve wave resistance, which is closely related to hull-forms. For this purpose, we developed automatic hull-form design software for ships by combining an optimization technique, resistance prediction technique and hull-form modification technique, appling the software developed to a target ship. A sequential quadratic programming method was used for optimization, and a potential-based panel method was used to predict resistance performance. A Gaussian-type modification function was developed and applied to change the ship hull-form. The software developed was used to design a target ship operating at two different speeds, and the performance of the resulting optimized hull was compared with the results of the original hull. In order to verify the validity of the program developed, experimental results obtained in model tests were compared with calculated values by numerical analysis.

Optimal Design of Deep-Sea Pressure Hulls using CAE tools (CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구)

  • Jeong, Han Koo;Henry, Panganiban
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 2012
  • Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.

Practical Hull Form Design using VOB (VOB를 이용한 선형 설계 실용화에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.235-242
    • /
    • 2016
  • In general, ship hull form design is carried out in two stages. In the first stage, the longitudinal variation of the sectional area curves is adapted from a similar mother ship to determine the volume distribution in ships. At this design stage, the initial design conditions of displacement, longitudinal center of buoyancy, etc. are satisfied and the global hydrodynamic properties of the structure are optimized. The second stage includes the local designing of the sectional forms. Sectional forms are related to the local pressure resistance in the fore- and aft-body shapes, cargo boundaries, interaction between the hull and propeller, etc. These relationships indicate that the hull sections need to be optimized in order to minimize the local resistance. The volumetric balanced (VOB) variation of ship hull forms has been suggested by Kim (2013) as a generalized, systematic variation method for determining the sectional area curves in hull form design. This method is characterized by form parameters and is based on an optimization technique. This paper emphasizes on an extensional function of the VOB considering a geometrical wave profile. We select a container ship and an LNG carrier to demonstrate the applicability of the proposed technique. Through analysis, we confirm that the VOB method, considering the geometrical wave profile, can be used as an efficient tool in the hull form design for ships.

Research on Wave-Making Resistance Reduction Technology for Container Ships (컨테이너선의 조파저항 감소 기술에 대한 연구)

  • Hee Jong Choi
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.249-260
    • /
    • 2024
  • This paper aimed to summarize research on technologies that could efficiently reduce wave-making resistance of container ships. Tto develop wave resistance reduction technology that could be applied to container ships and use it in real ship design, hull-form optimal design was performed by applying optimization algorithms, hull-form change algorithms, ship performance prediction algorithms, automation algorithms, and iterative optimal design techniques. A computer program was also developed. To properly set design variables known to be important elements in hull-form optimal design and to efficiently set lower and upper limits of design variables, a sensitivity analysis algorithm was developed and applied to hull-form optimal design. To predict the reliability and applicability of the developed computer program for real ships, hull-form optimal design was performed for a KRISO Container Ship (KCS), a container ship with various studies conducted worldwide. Hull-form optimal design was performed at Fn=0.26, the design speed of the KCS ship. Numerical analysis was performed on the hull-form of the target ship, the KCS ship, and the hull-form of the ship derived as a result of the hull-form optimal design to determine wave resistance, wave system, and wave height. The optimal ship's wave resistance was found to be reduced by 80.60% compared to the target ship. The displacement and wetted surface area were also found to be reduced by 1.54% and 1.21%, respectively.

Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile (Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발)

  • Kim, Jin-Woo;Park, Sung-Woo;Lee, Pyung-Kuk;Lee, Wang-Soo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

Hull form design for the fore-body of medium-sized passenger ship with gooseneck bulb

  • Yu, Jin-Won;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • The recent IMO MEPC regulation on EEDI, EEOI and increased fuel cost has worsened the financial condition of the small and medium sized passenger ferry companies, and it is situated to acquire the economic ships with a pretty high resistance performance. The purpose of this research is to develop a design method on the efficient gooseneck bulb for the middle-sized passenger ferry operated in the Far East Asian seas. The hull forms are designed by varying the gooseneck bulb parameters to find the changes on the resistance performance according to the shape of bulb. The numerical series tests are made to derive the regression equation for estimating the resistance through analyzing the data statistically. This equation is set as an objective function, and then using the optimization algorithm searches for the optimal combination of the design variables. After a hull form is designed corresponding to optimized parameters.

A Study on Thickness Optimization of Bottom Floor for Container Ship (컨테이너선 Bottom Floor 두께 최적화에 대한 연구)

  • Lee, A-Mi;Ryu, Yeong-Ung;Lee, Joon-Hyuk;You, Yeong-Gyu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.95-100
    • /
    • 2011
  • In general, thickness of bottom floor in fore/aft cargo hold region for container ship has been determined based on FEM analysis result of mid cargo hold region. But this approach has room for improvement because section shape and frame spacing in fore/aft cargo hold of container ship are quietly different from those of mid cargo hold. From this study, correlation between FEM result and grillage analysis result has been investigated and simple method for thickness determination of bottom floor in fore/aft cargo hold using newly improved grillage analysis is proposed.

  • PDF

Parametric Design of Complex Hull Forms

  • Kim Hyun-Cheol;Nowacki Horst
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.47-63
    • /
    • 2005
  • In the present study, we suggest a new method for designing complex ship hull forms with multiple domain B-spline surfaces accounting for their topological arrangement, where all subdomains are fully defined in terms of form parameters, e.g., positional, differential and integral descriptors. For the construction of complex hull forms, free-form elementary models such as forebody, afterbody and bulbs are united by Boolean operation and blending surfaces in compliance with the sectional area curve (SAC) of the whole ship. This new design process in this paper is called Sectional Area Curve-Balanced Parametric Design (SAC-BPD).