• Title/Summary/Keyword: Hull optimization

Search Result 159, Processing Time 0.027 seconds

Study on the Optimum Modification and Modal Analysis of Stiffened Plate of Ship Hull Structure (신체의 Stiffened Plate 구조물의 모우드해석과 최적변경법에 관한 연구)

  • 박성현;박석주;고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.10b
    • /
    • pp.51-58
    • /
    • 2000
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization ,finite element method (FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristic by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

Dynamic Positioning Control of a Twin-hull Unmanned Surface Ship (쌍동형 무인선의 동적위치제어에 관한 연구)

  • Kang, Minju;Kim, Taeyun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.217-225
    • /
    • 2016
  • Dynamic Positioning (DP) is used to automatically maintain the position and heading of a floating structure subjected to environmental disturbances. A DP control system is composed of a motion controller to compute the desired force and moment and a thrust allocator to distribute the computed force and moment to multiple thrusters considering mechanical and operational constraints. Among various thruster configurations, azimuth thrusters or propeller/rudder pairs tend to make the allocation problem difficult to solve, because these types of propulsion systems include nonlinear constraints. In this paper, a dynamic positioning strategy for a twin-thruster ship that is propelled by two azimuthing thrusters is addressed, and a thrust allocation method which does not require a numerical optimization solver is proposed. The applicability of the proposed method is demonstrated with an experiment using an autonomous boat.

A Method of the Computer-Aided Preliminary Design of Dry-Cargo Ships (화물선(貨物船)의 초기기본설계(初期基本設計)를 위한 전자계산기(電子計算機)의 이용(利用))

  • J.H.,Hwang;S.J.,Yim;K.C.,Kim;H.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1973
  • In the Department of Naval Architecture, Seoul National University, the development of computer programs for the computer-aided ship design sponsored by the Ministry of Science and Technology has been begun. The project is to be accomplished as a four-year plan, and the results of the works of the first year, preliminary design of dry-cargo ships based on an optimization technique and some fundamental calculations accompanied with the basic design of ships such as calculations of displacement, hydrostatic characteristics of hull forms, stability, floodable length, load line and longitudinal section modulus, are given in the Report R-72-9[9] published by the sopnsor for the public interests. In this paper, the philosophy and methodological principles with which the preliminary design program given in Appendix II was developed are summerized.

  • PDF

3D Printing Orientation Optimization Based on Upright Orientation and Overhang (수직 방향과 오버행을 고려한 3D 프린팅 방향 최적화)

  • Park, Jiyoung;Shin, Hwa Seon
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1776-1777
    • /
    • 2015
  • 본 연구에서는 3D 객체의 수직 방향(upright orientation)과 오버행(overhang) 면적을 고려하는 3D 프린팅 방향 최적화 방법을 제안한다. 모든 메시 법선들을 세 그룹으로 분류함으로써 객체의 수직방향을 계산한 후, 객체의 무게 중심과 3D convex hull을 사용하여 세 개의 후보 방향을 결정한다. 각 후보 방향에 대하여 오버행 메시 면적을 계산하고 최소 면적을 갖는 후보를 최종 프린팅 방향으로 결정한다. 후보 방향들을 적용하여 회전시킨 모델을 Cura에서 로드하여 프린팅 시간을 가측정한 결과, 제안 방법에 의해 최적화된 방향이 가장 짧은 시간이 소모되는 것으로 나타났다.

Optimal wind-induced load combinations for structural design of tall buildings

  • Chan, C.M.;Ding, F.;Tse, K.T.;Huang, M.F.;Shum, K.M.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.323-337
    • /
    • 2019
  • Wind tunnel testing technique has been established as a powerful experimental method for predicting wind-induced loads on high-rise buildings. Accurate assessment of the design wind load combinations for tall buildings on the basis of wind tunnel tests is an extremely important and complicated issue. The traditional design practice for determining wind load combinations relies partly on subjective judgments and lacks a systematic and reliable method of evaluating critical load cases. This paper presents a novel optimization-based framework for determining wind tunnel derived load cases for the structural design of wind sensitive tall buildings. The peak factor is used to predict the expected maximum resultant responses from the correlated three-dimensional wind loads measured at each wind angle. An optimized convex hull is further developed to serve as the design envelope in which the peak values of the resultant responses at any azimuth angle are enclosed to represent the critical wind load cases. Furthermore, the appropriate number of load cases used for design purposes can be predicted based on a set of Pareto solutions. One 30-story building example is used to illustrate the effectiveness and practical application of the proposed optimization-based technique for the evaluation of peak resultant wind-induced load cases.

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

Turret location impact on global performance of a thruster-assisted turret-moored FPSO

  • Kim, S.W.;Kim, M.H.;Kang, H.Y.
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.265-287
    • /
    • 2016
  • The change of the global performance of a turret-moored FPSO (Floating Production Storage Offloading) with DP (Dynamic Positioning) control is simulated, analyzed, and compared for two different internal turret location cases; bow and midship. Both collinear and non-collinear 100-yr GOM (Gulf of Mexico) storm environments and three cases (mooring-only, with DP position control, with DP position+heading control) are considered. The horizontal trajectory, 6DOF (degree of freedom) motions, fairlead mooring and riser tension, and fuel consumptions are compared. The PID (Proportional-Integral-Derivative) controller based on LQR (linear quadratic regulator) theory and the thrust-allocation algorithm which is based on the penalty optimization theory are implemented in the fully-coupled time-domain hull-mooring-riser-DP simulation program. Both in collinear and non-collinear 100-yr WWC (wind-wave-current) environments, the advantage of mid-ship turret is demonstrated by the significant reduction in heave at the turret location due to the minimal coupling with pitch mode, which is beneficial to mooring and riser design. However, in the non-collinear WWC environment, the mid-turret case exhibits unfavorable weathervaning characteristics, which can be reduced by employing DP position and heading controls as demonstrated in the present case studies. The present study also reveals the plausible cause of the failure of mid-turret Gryphon Alpha FPSO in milder environment than its survival condition.

A Study on the Database Generation of Propulsion Performance for Ships Optimum Routing System (선박 최적운항시스템을 위한 추진성능 데이터베이스 생성 연구)

  • Kim, Eun-Chan;Kang, Kuk-Jin;Lee, Han-Jin
    • Journal of Navigation and Port Research
    • /
    • v.40 no.3
    • /
    • pp.97-103
    • /
    • 2016
  • The precise prediction of ships propulsion performance is very important to find out the ships optimum route. This paper describes the development of computer program to generate the database of propulsion performance for the ships optimum routing system. The propulsion performance of ship in the sea is caused by not only ships conditions such as drift and hull roughness, but also various sea conditions such as wave and wind. These prediction methods of added resistance are based on the ships speed trial analysis methods of the ISO 15016:2002 standard, and a few prediction methods of the wind and hull roughness are supplemented. These prediction methods have been applied to the comprehensive computer program. And the database calculation for the research ice breaker the Araon has been carried out, which shall be used for the calculation of optimum route. Furthermore, this program shall be used for the route optimization in global shipping routes.

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.