• Title/Summary/Keyword: Hull from design

Search Result 345, Processing Time 0.022 seconds

An Algorithm for Optimized Accuracy Calculation of Hull Block Assembly (선박 블록 조립 후 최적 정도 계산을 위한 알고리즘 연구)

  • Noh, Jac-Kyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.552-560
    • /
    • 2013
  • In this paper, an optimization algorithm for the block assembly accuracy control assessment is proposed with consideration for the current block assembly process and accuracy control procedure used in the shipbuilding site. The objective function of the proposed algorithm consists of root mean square error of the distances between design and measured data of the other control points with respect to a specific point of the whole control points. The control points are divided into two groups: points on the control line and the other points. The grouped data are used as criteria for determining the combination of 6 degrees of freedom in the registration process when constituting constraints and calculating objective function. The optimization algorithm is developed by using combination of the sampling method and the point to point relation based modified ICP algorithm which has an allowable error check procedure that makes sure that error between design and measured point is under allowable error. According to the results from the application of the proposed algorithm with the design and measured data of two blocks data which are verified and validated by an expert in the shipbuilding site, it implies that the choice of whole control points as target points for the accuracy calculation shows better results than that of the control points on the control line as target points for the accuracy of the calculation and the best optimized result can be acquired from the accuracy calculation with a fixed point on the control line as the reference point of the registration.

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.

A Study on the Structural Behavior of FPSO Topside Module by Support Condition (지지조건에 따른 FPSO 상부 모듈의 구조적 거동에 관한 연구)

  • Jang, Beom-Seon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.18-23
    • /
    • 2018
  • FPSO consists of topside modularized plants for production of crude oil, and hullside structures that serve as support for the topside and storage of produced crude oil. The structural behavior of the FPSO topside module and its supporting hull depends on the interface structure that connects them, and the interface structure consists of a combination of individual unit support structures called Module Support Seat (MSS). Types of interface structures are various and, accordingly, the basic design of the FPSO topside module structure is greatly influenced, so various design methods should be considered from the initial design phase. Structural design of FPSO topside module requires consideration of the number of MSSs, connection type, and structural analysis options such as the range of finite element models, load conditions, and boundary conditions for verification of structural strength. In this study, the comparison combination cases for the above considerations were derived and the strength evaluation was performed, and the structural behavior characteristics of the topside module were compared and analyzed through a detailed review of the analysis results. The results of this study are considered to be a good reference for designing a more reliable topside module structure.

Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

  • Kujala, Pentti;Korgesaar, Mihkel;Kamarainen, Jorma
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.376-384
    • /
    • 2018
  • Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code.

Estimation about Local Strength using FE-Analysis for Steel Yacht (유한요소해석을 이용한 강선요트의 국부강도 평가)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.77-82
    • /
    • 2005
  • Previously sailing yachts or leisure yachts were mainly made from FRP(Fiber glass reinforced plastic) in the small shipbuilding, but recently there is a trend to replace it for steel or aluminum to substitute FRP for environmental friendly materials. Although It have to need a many checked item in case of hull girder strength and transverse strength normally evaluate base on calculation of class guideline so called direct calculation method. Otherwise. this method of initial structural design considered enough for safety margin on the structure. But, case of small craft must consider for evaluating local strength through rational method. In this paper, check the bow structure members for satisfying results base on allowable stress criterion of damaged bow structure by dynamic load due to slamming and bottom impact load due to pitching motion through finite element analysis. and investigate engine bed structure considering engine weight load and transverse wave load.

  • PDF

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

Theoretical Analysis of Linear Maneuvering Coefficients with Water Depth Effect (수심의 영향을 고려한 선형(線形) 조종성 계수의 이론적 해석)

  • In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.47-58
    • /
    • 1994
  • Theoretical calculations are carried out for the estimation of linear maneuvering coefficients of a ship moving in shallow water region. Hydrodynamic forces and moments acting on a maneuvering ship are modelled based on a slender body theory, from which integro-differential equation for the unknown inner stream velocity is derived. Numerical algorithms fur solving this equation are described in detail. By considering water depth effects in the mathematical model, variations of maneuvering coefficients with water depth are studied. Programs are developed according to this method and calculations are done for Mariner, Series 60 and Wigley hull forms. For the verification of the programs, calculated results are compared with some analytic solutions and with published experimental results, which show good agreements in spite of many assumptions included in the mathematical model. It is expected that this method can be used as a preliminary tool for the estimation of maneuverability coefficients of a ship in shallow water region at its initial design stage.

  • PDF

Estimating Hydrodynamic Coefficients with Various Trim and Draught Conditions (흘수 및 트림 변화를 고려한 선박 유체력 미계수 추정에 관한 연구)

  • Kim, Daewon;Benedict, Knud;Paschen, Mathias
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.933-940
    • /
    • 2017
  • Draught and trim conditions are highly related to the loading condition of a vessel and are important factors in predicting ship manoeuverability. This paper estimates hydrodynamic coefficients from sea trial measurements with three different trim and draught conditions. A mathematical optimization method for system identification was applied to estimate the forces and moment acting on the hull. Also, fast time simulation software based on the Rheinmetall Defense model was applied to the whole estimation process, and a 4,500 Twenty-foot Equivalent Unit (TEU) class container carrier was chosen to collect sets of measurement data. Simulation results using both optimized coefficients and newly-calculated coefficients for validation agreed well with benchmark data. The results show mathematical optimization using sea measurement data enables hydrodynamic coefficients to be estimated more simply.

The Analysis of Collapse Load of Thick Pressure Cylinder under External Hydrostatic Pressure (외압을 받는 두꺼운 원통형 내압용기의 붕괴하중 해석)

  • Lee, Jae-Hwan;Park, Byoungjae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.175-186
    • /
    • 2019
  • Number of studies on the buckling of thin cylindrical pressure vessels, such as submarine pressure hull and pipe with a large ratio of diameter/thickness, have been carried out in the naval and ocean engineering. However, research about thick cylinder pressure vessel has not been active except for the specific application in nuclear area. There are not many papers for the estimation of buckling and ultimate load capacity of thick cylinders for the deep sea usage. Thus, it is important to understand the theoretical bases of the buckling and collapse process and the derivation process of such loads for the proper design and structural analysis. The objective of this study is to survey the collapse behavior, to analyse and clarify the derivation procedure and to estimate the ultimate collapse load for thick cylinder by analyzing relevant books and papers. It is found that the yielding begins at the internal surface of the thick cylinder and plasticity develops from the internal surface to the external surface to generate collapse. Also the initial imperfection of cylinder develops flattening and consequently accelerates buckling and finally ultimate collapse. By comparing the collapse loads of aluminum thick cylinder by applying equations herein, it is shown that the equations analyzed are appropriate to obtain collapse load for thick cylinder.

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.