• Title/Summary/Keyword: Hull from design

Search Result 344, Processing Time 0.031 seconds

Job Assignment Simulation of Ship Hull Production Design in Consideration of Mid-Term Schedule (중일정계획을 고려한 선체 생산설계 작업할당 시뮬레이션)

  • Son, Myeong-Jo;Kim, Tae-Wan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.334-342
    • /
    • 2013
  • In this paper, we analyze the procedure of the design manager for the enhancement of the hull production design process by use of the simulation method. Normally, design manager assigns design jobs according to various methods and estimates the corresponding results. When the construction drawing which is the output of the detail design where a design is dealt by zones, the design manager identifies blocks and analyzes their work difficulties, and assigns jobs to design engineers who are different in capabilities. These processes including the design engineer who can be modeled with man-hours evaluation model are represented in detail as a simulation model. As the high-level modeling for the discrete-event system, we use Event Graph model. And we implemented the simulation using Simkit which is open simulation engine for the discrete-event system. We made the simulation scenario to be written by a user in the scenario generator which is separated from the simulation model, and made the simulation result to be visualized in the form of Gantt chart in a Web. In the scenario of the irregular issuance for various construction drawings which contain different numbers of blocks, we performed the Monte-Carlo simulation according to various assignment methods to find the assignment result that satisfies the mid-term schedule.

Capacity evaluation on the slitting device of the spent fuel rod (사용후핵연료봉 slitting 장치 성능 평가)

  • 정재후;윤지섭;김영환;진재현;김동기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1154-1157
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed for the separation of the pellet and hull from the cutting fuel rod with length of 250 mm, and in order to feed UO$_2$ pellet. We have analyzed on the existing technologies for designing and producing of the slitting device in the first year(2001), based on these results, designed and produced the rod slitting device. It has effectively separated the pellet from the hull, but demanded the supplement separation work because of the mixing with pellet and hull in the vessel, and required the condition for the reducing time of the process. In the second year(2002), we have reduced the work time, performed the test and capacity evaluation with the improving device, based these results, and ensured the data demanded for designing of the spent fuel rod slitting device. We have compared with the DUPIC(Direct use of spent PWR fuel in CAND reactors) process, and developed the device for the purpose of reducing over 40 % in comparition with the DUPIC operation time(5 minutes). Based on these results, it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF

Calculation of ice clearing resistance using normal vector of hull form and direct calculation of buoyancy force under the hull

  • Park, Kyung-Duk;Kim, Moon-Chan;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.699-707
    • /
    • 2015
  • The ice-resistance estimation technique for icebreaking ships had been studied intensively over recent years to meet the needs of designing Arctic vessels. Before testing in the ice model basin, the estimation of a ship's ice resistance with high reliability is very important to decide the delivered power necessary for level ice operation. The main idea of previous studies came from several empirical formulas, such as Poznyak and Ionov (1981), Enkvist (1972) and Shimansky (1938) methods, in which ice resistance components such as icebreaking, buoyancy and clearing resistances were represented by the integral equations along the Design Load Water Line (DLWL). The current study proposes a few modified methods not only considering the DLWL shape, but also the hull shape under the DLWL. In the proposed methodology, the DLWL shape for icebreaking resistance and the hull shape under the DLWL for buoyancy and clearing resistances can be directly considered in the calculation. Especially, when calculating clearing resistance, the flow pattern of ice particles under the DLWL of ship is assumed to be in accordance with the ice flow observed during ice model testing. This paper also deals with application examples for a few ship designs and its ice model testing programs at the AARC ice model basin. From the comparison of results of the model test and the estimation, the reliability of this estimation technique has been discussed.

Flow Analysis around a High-speed Planing Hull Model (고속 활주선 모형 주위의 유동해석)

  • Kim, Byoung-Nam;Kim, Wu-Joan;Yoo, Jae-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.38-46
    • /
    • 2009
  • Two sets of numerical simulations were carried out for a planing hull model ship. In the first, the WAVIS 1.4 linear and nonlinear potential solver was utilized with the free support condition, in which the running posture was determined during calculation. The linear and nonlinear potential calculation results showed qualitative agreement in the trim and resistance coefficient with the MOERI towing tank test. However, the nonlinear potential calculation gave better results than the linear method. In the next simulation, Fluent 6.3.26 with a VOF model and the WAVIS 1.4 nonlinear potential solver were used with the given running posture from the measurement carried out in the MOERI towing tank. Fluent with the VOF method had substantially better agreement with model test results than the results from the WAVIS nonlinear potential calculation for the total resistance coefficient, and for the bow and stern wave patterns, in spite of the much greater computational costs. Both methods can be utilized in planing hull design when their limitations are perceived, and the running posture should be predicted correctly.

Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

  • Kim, Sung-Hee;Hong, Suk-Yoon;Song, Jee-Hun;Kil, Hyun-Gwon;Jeon, Jae-Jin;Seo, Young-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-111
    • /
    • 2012
  • Hull Mounted Sonar (HMS) is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.

Improvement of resistance performance of the 4.99 ton class fishing boat (4.99톤 어선의 저항성능 개선)

  • JEONG, Seong-Jae;AN, Heui-Chun;KIM, In-Ok;PARK, Chang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • The improvement of resistance performance for the 4.99 ton class fishing boats was shown. The 4.99 ton fishing boats are the most commonly used one in the Korean coastal region. The evaluation of resistance performance was estimated by the Computational Fluid Dynamics (CFD) analysis. The CFD simulation was performed by the validation for various types of bow shapes on the hull. The optimized hull form from the simulation was selected and showed the best resistance performance. This hull type was tested on the towing tank in the National Institute of Fisheries Science (NIFS). The effective horsepower (EHP) was estimated by the resistance test on the towing tank with the bare hull condition. The drag force on the three service speed conditions was obtained for the resistance analysis to power prediction. The measured drag forces are compared with the results from the CFD simulation with one another. As results of the model tests, it was confirmed that the shape of the bow is an important factor in the resistance performance. The effective horsepower decreased about 30% in comparison with the conventional hull form. Also, the resistance performance improved the reduction of required horsepower, which especially contributed to the energy-saving for the fisheries industry. In the CFD analysis, the resistance performance improved slightly. In this case, the ratio of the residual resistance ($C_R$) in the total resistance ($C_T$) was high. Therefore, the CFD analysis was not enough to satisfy with reflection for the free surface and wave form in the CFD procedure. Both model test and CFD calculation in this study can be applied to the initial design process for the coastal fishing vessel.

A Study on the Improvement of Resistance Performance for G/T 4.99ton Class Korean Coastal Fishing Boats (G/T 4.99톤급 한국 연안어선의 저항성능 개선에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Jee, Hyun-Woo;Park, Ae-Seon;Choi, Young-Chan;Ha, Yoon-Jin;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Korean fishing boats have had appropriate hull forms for the safety, stability and convenience of fishing ability. However, Korean fishermen are recently concerned about the resistance performance and speed of Korean fishing boats, because the prices of fuel oil are gradually risen, also the exhausting of fish resources and the demand of high speed fishing boats are increased. Therefore, the necessity of the study on the improvement of resistance performance for Korean small coastal fishing boats is gradually increased. This study compares the hull form characteristics of Korean fishing boats with those of Japanese fishing boats, and the hull form of a representative Korean fishing boat is modified. From the modification of the hull form parameters for the Korean fishing boat, the improvement of resistance performances is evaluated. Moreover, the increase of resistance performances is also achieved from the modification of local characteristics for the hull form of the Korean fishing boat. A computational method and ship model tests in towing tank are used for the conformations of the improvement of resistance performance.

A Study on the Generation of the Production Material Information of a Building Block and the Simulation of the Block Erection (선체 블록의 물량 정보 생성 및 블록 탑재 시뮬레이션에 관한 연구)

  • Lee K.Y.;Roh M.I.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.115-127
    • /
    • 2006
  • At the initial design stage, the generation process of the production material information of a building block and the simulation process of the block erection, which are required to perform the production planning and scheduling, have been manually performed by using 2D drawings, data of parent ships, and design experiences. To make these processes automatic, the accurate generation method of the production material information and the convenient simulation method of the block erection using the 3D CAD model, which was generated from the initial hull structural design system early developed by us, were proposed in this study. For this, a 3D CAD model for a whole hull structure was generated first, and the block division method for dividing the 3D CAD model into several building blocks was proposed. The generation method of the production material information for calculating the weight, center of gravity, painting area, joint length, etc. of a building block was proposed as well. Moreover, the simulation method of the block erection was proposed. Finally, to evaluate the efficiency of the proposed methods for the generation of the production material information and the simulation of the block erection, these methods were applied to corresponding processes of a deadweight 300,000 ton VLCC (Very Large Crude oil Carrier). As a result, it was shown that the production material information of a building block can be accurately generated and the block erection can be conveniently simulated in the initial design stage.

A Study on the Hole-Plan system combined with 3D CAD (3차원 CAD 통합형 홀 플랜 시스템에 관한 연구)

  • Ruy, Won-Sun;Yu, Yun-Sik;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • It is necessary to construct the process automation system to improve the design efficiency and procure the higher design quality on the field of ship building. To construct this system, the shipbuilding companies should improve the 3D CAD/CAM system customized to the ship design and the software about design information management which could solve the conflict problem between the several related design division at the same time. The typical example is the Hole-plan process in the ship-building design. For the request of additional holes from outfitting division, the hull design division checks the compatibility conditions and reflects these holes to the hull panels if acceptable. if not, the requests are rejected and sent back to the outfitting division. These serial processes are not simple and require the tedious communication, discussion, and the complicated drawings. This article gives a basic introduction to the process of hole-plan system and proposes a strategy to automate its process.