• Title/Summary/Keyword: Hull block

Search Result 79, Processing Time 0.023 seconds

Study on Analysis Method for Welding Deformation of curved Block - Development of Analysis and Application of real Block (곡 블록 용접변형 해석법에 관한 연구 - 해석법 정립 및 실 블록 적용)

  • Lee Myeong-Su;Jang Gyeong-Bok;Yang Jin-Hyeok;Gang Seong-Su
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.77-79
    • /
    • 2006
  • To achieve high productivity of assembly hull blocks, it is important to predict welding deformations accurately and to apply these data to the production planning. In the deformation analysis of hull block, simplified methods (elastic analysis) such as inherent method, equivalent loading method and local & global approach are usually used instead of thermal-elastic-plastic analysis because of calculating time and cost. To be much more practical, these simplified methods should consider gravity effect of plate and contact condition between the plate and the positioning jig. In this research, using finite element method, practical predicting method for the welding deformation of the curved hull blocks with considering welding sequence, gravity effect and contact condition is proposed.

  • PDF

Bay and Machine Selection for the Parts Fabrication of Ship Hull Construction (조선 선각가공공정에서 부재가공을 위한 Bay 및 가공기계의 선택)

  • Park, Chang-Kyu;Seo, Yoon-Ho
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.395-400
    • /
    • 1999
  • Shipbuilding process is composed of hull construction, in which the structural body of a ship is formed, and outfitting, in which all the non-structural parts such as pipes, derricks, engines, machinery, electrical cable, etc. are manufactured, added and assembled. Hull construction can be classified into parts fabrication, block assembly and hull erection. Among them, the parts fabrication is the first manufacturing stage that produces components or zones needed for block assembly and hull construction. More specifically, the parts fabrication is performed through machining processes including marking, cutting, pressing, and/or forming. When material is entering into the parts fabrication stage, it is important for achieving the total efficiency of production to select one of production division, so-called 'bay,' as well as machine tools on which the part is fabricated. In this paper, given production quantities of parts in the fabrication stage, the problem is to optimally select machine tools and production division, such that the total flow-time is minimized as well as the workload among machines is balanced. Specifically, three mathematical models for flow-time minimization, load balance, and simultaneously considering both objectives, and a numerical example are analyzed and presented.

  • PDF

Study on Analysis Method for Welding Deformation of curved Block - Specimen test and Verification (곡 블록 용접변형 해석법에 관한 연구 - 시험편 테스트 및 검증)

  • Lee, Myeong-Su;Jang, Gyeong-Bok;Park, Jung-Gu;Yang, Jin-Hyeok;Gang, Seong-Su
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.17-19
    • /
    • 2005
  • To achieve high productivity of assembly hull blocks, it is important to predict welding deformations accurately and to apply these data to the production planning. In the deformation analysis of hull block, simplified methods (elastic analysis) such as inherent method, equivalent loading method and local & global approach are usually used instead of thermal-elastic-plastic analysis because of calculating time and cost. To be much more practical, these simplified methods should consider gravity effect of plate and contact condition between the plate and the positioning jig. In this research, using finite element method, practical predicting method for the welding deformation of the curved hull blocks with considering welding sequence, gravity effect and contact condition is proposed.

  • PDF

A Fast Algorithm for evaluating the Security of Substitution and Permutation Networks against Differential attack and Linear attack (SPN구조 블록 암호의 차분 공격 및 선형 공격에 대한 안전성을 측정하는 고속 알고리즘)

  • 박상우;지성택;박춘식;성수학
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 2001
  • In this paper, we examine the method for evaluating the security of SPN structures against differential cryptanalysis and linear cryptanalysis. We present an example of SPN structures in which there is a considerable difference between the differential probabilities and the characteristic probabilities. Then we 7pose an algorithm for estimating the maximum differential probabilities and the maximum linear hull probabilities of SPN structures and an useful method for accelerating the proposed algorithm. By using this method, we obain the maximum differential probabilities and the maximum linear probabilities of round function F of block cipher E2.

Grid Generation and flow Analysis around a Twin-skeg Container Ship (Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석)

  • 박일룡;김우전;반석호
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.

Calculation of the Dynamic Contact Force between a Shipbuilding Block and Wire Ropes of a Goliath Crane for the Optimal Lug Arrangement (최적 러그 배치를 위한 골리앗 크레인의 와이어 로프와 선체 블록간의 동적 접촉력 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Cha, Ju-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.375-380
    • /
    • 2012
  • In this study, dynamic load and dynamic contact force between a building block and wire ropes of a goliath crane are calculated during lifting or turn-over of a building block for the design of an optimal lug arrangement system. In addition, a multibody dynamics kernel for implementing the system were developed. In the multibody dynamics kernel, the equations of motion are constructed using recursive formulation. To evaluate the applicability of the developed kernels, the interferences and dynamic contact force between the building block and wire ropes were calculated and then the hull structural analysis for the block was performed using the calculation result.

Research of fast point cloud registration method in construction error analysis of hull blocks

  • Wang, Ji;Huo, Shilin;Liu, Yujun;Li, Rui;Liu, Zhongchi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.605-616
    • /
    • 2020
  • The construction quality control of hull blocks is of great significance for shipbuilding. The total station device is predominantly employed in traditional applications, but suffers from long measurement time, high labor intensity and scarcity of data points. In this paper, the Terrestrial Laser Scanning (TLS) device is utilized to obtain an efficient and accurate comprehensive construction information of hull blocks. To address the registration problem which is the most important issue in comparing the measurement point cloud and the design model, an automatic registration approach is presented. Furthermore, to compare the data acquired by TLS device and sparse point sets obtained by total station device, a method for key point extraction is introduced. Experimental results indicate that the proposed approach is fast and accurate, and that applying TLS to control the construction quality of hull blocks is reliable and feasible.

The Effect of Hull Appendages on Maneuverability of Naval Ship by Sensitivity Analysis (민감도 해석을 통한 선체 부가물이 함정의 조종성능에 미치는 영향 분석)

  • Kim, Dae Hyuk;Rhee, Key-Pyo;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • Naval ships have hull appendages which are more exposed to the outside because of its small block coefficient compared with commercial ships. These exposed hull appendages like skeg, strut and shaft line affect the maneuverability of a ship. The effect of hull appendages has considered at initial design stage to estimate more accurate maneuverability. In this paper, sensitivity analysis is used to analyze the effect on maneuverability by hull appendages. 3 DOF maneuvering equations based on Mathematical Modelling Group (MMG) model are used and propeller & rudder model are modified to reflect the characteristics of twin propeller & twin rudder. Numerical maneuvering simulations (Turning test, Zig-zag test) for benchmark naval vessel, David Taylor Model Basin (DTMB) 5415 are performed. In every simulation, it is calculated that stability indices and maneuverability characteristics (Tactical Dia., Advance, 1st Overshoot, Time of complete cycle) with respect to the parameters (area times lift coefficient slope, attachment location) of hull appendages. As a result, two regression formulas are established. One is the relation of maneuverability characteristics and stability indices and the other is the relation of stability indices and hull appendages.

A Study on Inductive Power Line Communication with Metal Block Channel (금속블록 채널이 있는 유도형 전력선통신에 관한 연구)

  • Sohn, Kyung-Rak;Kim, Hyun-Sik
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.95-100
    • /
    • 2021
  • If we know the location of the hull block and the welding feeder in the shipyard, we can easily obtain the location information of the worker. That data is very useful for implementing a workplace safety monitoring system. However, it is difficult to apply a fixed communication network to the workplace due to the specificity of the hull structure and welding process. In this study, inductive power line communication, which can replace dedicated communication line, was reviewed. A ferrite core was used as an inductive coupler to be installed on the power cable of the welding machine, and a nano-crystalline core was applied as a coupler to be fastened to the support rod of the metal block. In order to visualize the operating principle of the proposed couplers, 3D modeling and finite element analysis were performed with the COMSOL AC/DC module. In the communication performance test using an aluminum profile, when the communication channel was formed by the contact of the welding electrode, the bandwidth was kept above 6 Mbps.

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.