• Title/Summary/Keyword: Hull Resistance

Search Result 444, Processing Time 0.026 seconds

참치 선망어선의 선형개발을 위한 조파저항의 수치해석 (Numerical Analysis on the Wave Resistance for Development of Ship`s From of Tuna Purse Seiner)

  • 김인철
    • 수산해양기술연구
    • /
    • 제28권2호
    • /
    • pp.228-239
    • /
    • 1992
  • The purpose of the present research is to develop an efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. Some numerical results for series 60, C sub(b) =0.6, hull are presented in this paper. The wave pattern and wave resistance are computed at two Froude numbers, 0.267 and 0.304. These results are better than those of Michell's thin ship theory in comparison with measured results. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

세일링 요트의 선형 및 부가물 개발에 관한 연구 (Hull Form Development of Sailing Yacht with Sails and Appendages)

  • 안해성;유재훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.109-115
    • /
    • 2006
  • An overview of 30 feet sailing yacht design is presented. with an emphasis on the factors contributing to start-up Popularization . After prescribing the configurations of the purposed yacht. the design of the hull form with a rudder and a keel, are schematically described. Also the determinations of the dimensions of the sail and rig are performed.

접촉식 센서를 이용한 고속 활주선 선미부 압력 계측 시험 (Pressure Measurement of Planing Hull Stern Bottom by Tactile Sensors)

  • 박세용;박종열;이신형;김동진
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.431-437
    • /
    • 2018
  • The running attitude of a planing hull is determined by the pressure distribution on the hull bottom, and it significantly affects hydrodynamic performance of the ship, i.e., resistance, maneuverability, and seakeeping ability. Therefore, it is essential to investigate pressure distribution on the hull bottom in order to improve hull design. In the present study, a novel pressure measurement system using tactile sensors was introduced for a planing hull. The test model was a 23 m-class planing hull with a hard chine. The pressure measurement showed that the pressure at the transom was lower than the atmospheric pressure, owing to flow separation at the transom.

수치해석을 통한 고속활주선의 횡방향 Step적용 위치에 관한 연구 (Study on the Transvers Step Application Location of High Speed Planning Hull by Numerical Analysis)

  • 김병재;김상원;박근홍;이경우;조대환;서광철
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.234-235
    • /
    • 2017
  • 기존 고속활주선의 마찰저항을 개선하기 위해 선저에 공기층을 형성하게 하는 계단형식의 선형변환이 연구되어 왔다. 그러나 활주선마다 다른 항주자세와 Step의 효과를 확인하기 위해서 적절한 위치에 대한 연구는 부족한 실정이다. 본 연구에서는 이러한 Step을 길이방향으로 적용시켰을 때 나타나는 항주자세의 변화, Step의 작용효과 및 마찰저항의 변화를 확인하였다.

  • PDF

LPG 선박의 선수 Bulb 형상 비교 Study (A Comparison Study of the Bulbous Bow Shape for LPG Carrier)

  • 이종기;박재상;김성표
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.31-37
    • /
    • 2005
  • An attempt to improve the speed performance through the minimizing in wave resistance has been done by an application of gooseneck and no bulb type to bulbous bow for the DSME 78,500 Class LPG Carrier on the basis of the CFD calculation and comparatives model tests. The hydrodynamic characteristics according to the variation of the shape of Cp-curve, design load water line, frame line and bulbous bow that have an important effect on the wave resistance has been evaluated/calculated by ship-flow code. A wide variety in hull variation have been tried to have a good hull form with three types of fore-body hull forms mainly classified by the shape of bulbous bow. The speed performances for the three final hull forms with different bulbous bows have been evaluated through the model tests.

  • PDF

고속 활주선 모형 주위의 유동해석 (Flow Analysis around a High-speed Planing Hull Model)

  • 김병남;김우전;유재훈
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.38-46
    • /
    • 2009
  • Two sets of numerical simulations were carried out for a planing hull model ship. In the first, the WAVIS 1.4 linear and nonlinear potential solver was utilized with the free support condition, in which the running posture was determined during calculation. The linear and nonlinear potential calculation results showed qualitative agreement in the trim and resistance coefficient with the MOERI towing tank test. However, the nonlinear potential calculation gave better results than the linear method. In the next simulation, Fluent 6.3.26 with a VOF model and the WAVIS 1.4 nonlinear potential solver were used with the given running posture from the measurement carried out in the MOERI towing tank. Fluent with the VOF method had substantially better agreement with model test results than the results from the WAVIS nonlinear potential calculation for the total resistance coefficient, and for the bow and stern wave patterns, in spite of the much greater computational costs. Both methods can be utilized in planing hull design when their limitations are perceived, and the running posture should be predicted correctly.

CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구 (A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis)

  • 정태환;;;이승건
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

200TEU급 연안-하천 연계 컨테이너선의 선형개발 (Hull Form Development for 200TEU Class Sea-River Going Container Ship)

  • 이영길;이승희;이규열;김성용
    • 대한조선학회논문집
    • /
    • 제34권4호
    • /
    • pp.72-83
    • /
    • 1997
  • 본 연구에서는 연안 및 운하, 두 곳 모두에서 운항이 가능한 컨테이너선에 대한 선형설계를 수행하였다. 설계된 선형은 기존의 140TEU 컨테이너선을 기준선으로 하여 설계된 200TEU급 컨테이너 선형으로, 선수부에 대하여는 기존의 저항시험 자료들을 통한 선형의 재설계도 시도되었다. 모형시험은 선형시험수조에서 일반적인 저항시험을 통한 전저항, 침하와 트림(trim)이 제측되었으며, 선체주위 유동장의 해석을 위한 수치해석으로는 무한수심 뿐만 아니라 제한수로상태에 대하여도 MAC법을 기초로 한 유한차분법(Finite-Difference Method)에 의해 계산이 수행되었다. 이러한 일련의 모형시험 및 유동장의 수치해석을 통하여 설계된 선형의 저항 특성을 파악하였다.

  • PDF

선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성 (Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.