• 제목/요약/키워드: Hull Resistance

검색결과 444건 처리시간 0.022초

46피트급 모터요트의 선형설계 (Hull Form Design of 46 Feet Motor Yacht)

  • 신성철;김훤모
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.455-461
    • /
    • 2008
  • This article describes a part of collaborative research between industry and academy to develop an initial hull form of 46 feet motor yacht. Hydrodynamic performances such as stability, resistance and seaworthiness were estimated after completing the procedure of hull form design in the initial design stage.

Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails

  • Seo, Jeonghwa;Choi, Hak-Kyu;Jeong, Uh-Cheul;Lee, Dong Kun;Rhee, Shin Hyung;Jung, Chul-Min;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.442-455
    • /
    • 2016
  • The resistance and seakeeping performance of a high-speed monohull vessel were investigated through a series of model tests in a towing tank. The hull had a slender wave-piercing bow, round bilge, and small deadrise angle on stern. Tests on the bare hull in calm water were first conducted and tests on spray rails followed. The spray rails were designed to control the flow direction and induce a hydrodynamic lift force on the hull bottom to reduce trim angle and increase rise of the hull. The maximum trim of the bare hull was $4.65^{\circ}$ at the designed speed, but the spray rails at optimum location reduced trim by $0.97^{\circ}$. The ship motion in head seas was examined after the calm water tests. Attaching the rails on the optimum location effectively reduced the pitch and heave motion responses. The vertical acceleration at the fore perpendicular reduced by 11.3%. The effective power in full scale was extrapolated from the model test results and it was revealed that the spray rails did not have any negative effects on the resistance performance of the hull, while they effectively stabilized the vessel in calm water and waves.

파라메트릭 변환함수를 이용한 선형최적화의 실용화에 관한 연구 (A Practical Hull Form Optimization Method Using the Parametric Modification Function)

  • 김희정;최희종;전호환
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.542-550
    • /
    • 2007
  • A geometry modification is one of main keys in achieving a successful optimization. The optimized hull form generated from the geometry modification should be a realistic, faired form from the ship manufacturing point of view. This paper presents a practical hull optimization procedure using a parametric modification function. In the parametric modification function method, the initial ship geometry was easily deformed according to the variations of design parameters. For example, bulbous bow can be modified with several parameters such as bulb area, bulb length, bulb height etc. Design parameters are considered as design variables to modify hull form, which can reduce the number of design variables in optimization process and hence reduce its time cost. To verify the use of the parametric modification function, optimization for KCS was performed at its design speed (FN=0.26) and the wave making resistance is calculated using a well proven potential code with fully nonlinear free surface conditions. The design variables used are key design parameters such as Cp curve, section shape and bulb shape. This study shows that the hull form optimized by the parametric modification function brings 7.6% reduction in wave making resistance. In addition, for verification and comparison purpose, a direct geometry variation method using a bell-shape modification function is used. It is shown that the optimal hull form generated by the bell-shaped modification function is very similar to that produced by the parametric modification function. However, the total running time of the parametric optimization is six times shorter than that of the bell shape modification method, showing the effectiveness and practicalness from a designer point of view in ship yards.

극지해역 운용 해양작업지원선(PSV)의 선형설계와 빙 저항추진 성능 연구 (A Study on the Hull Form Design and Ice Resistance & Propulsion Performance of a Platform Support Vessel (PSV) Operated in the Arctic Ocean)

  • 염종길;강국진;장진호;정성엽
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.497-504
    • /
    • 2018
  • Platform Support Vessels operated in the Arctic Ocean support diverse operations of offshore plant in the sea, and the PSV is also needed to support works to exploit the oil and gas in the Arctic Ocean. Both of the ice breaking and the open sea performance have been considered together to secure the enhanced operational performance at the harsh environment in the Arctic Ocean and the open sea as well. In this study, One of the design requirements of a PSV is to guarantee continuous icebreaking performance with 3 knots at 1 m thickness of level ice, where the design draft is 7.5m and the engine power is 13 MW. Three hull forms were designed, and the ice resistance based on empirical formulas was estimated to select the initial hull form having an outstanding performance. The full scale performance of the designed hull forms was predicted by the ice model test conducted in the ice model basin of Korea Research Institute of Ships & Ocean Engineering(KRISO). The analysed results show that the selected hull form satisfies the above design requirement.

합성얼음의 두께변화와 선형변화에 따른 Pack ice 상태에서의 쇄빙상선의 저항특성 연구 (Study on Resistance Performance of Icebreaking Cargo Vessel in Pack Ice Condition according to Variation of Synthetic Ice Thickness and Hull Form Characteristics)

  • 이승호;김문찬;전호환;조준철;신병철;정운화
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.471-478
    • /
    • 2009
  • The present paper deals with characteristics of resistance performance according to the variation of synthetic ice thickness and hull form. The resistance test has been conducted with pack ice condition in Pusan National University towing tank. Stem angle has been chosen as main parameters for the variation of hull form characteristics, which is the most important factor especially in icebreaking cargo vessel. The serial comparisons of resistance test have been done with the variation of hull form parameter as well as with the different thickness of synthetic ice. The different trend of resistance performances with increasing of stem angle has been shown at each synthetic ice thickness. The present test results is expected to be confirmed by comparing the test results in ice tank in the near future.

조업성능 향상을 위한 선망선 개선 (Remodeling of tuna purse seiner for improving fishing performance)

  • 홍진근;강일권;정성재
    • 수산해양기술연구
    • /
    • 제47권4호
    • /
    • pp.435-442
    • /
    • 2011
  • In an attempt to respond to the increase in international oil prices and reduce operating expenses, ship remodeling was carried out on a 740ton class tuna purse seiner. To strengthen the competitiveness of the fisheries industry by improving vessel performance, a bulbous bow was newly equipped. The slipway and rudder area were also lengthened and enlarged with the propeller and main engine remained unchanged. To reduce the hull resistance, a circle type bulbous bow was attached on the hull behind bow thruster and thus the cost for exchanging electrical equipment for bow thruster was reduced. The new rudder area was expanded 15% more than the old one within the extent that the existing mechanical control part and rudder stock were not changed. To prevent fishing net damage and stabilize wake field, slipway was lengthened to the optimal position. All of the new design of remodeling parts went through the model tests in towing tank and CWC. Besides resistance test, all of necessary model test results were delivered for hydrodynamic character for the modified ship. The maneuvering simulation to verify that the remodeled ship satisfies the IMO rules was performed in both zigzag and turning tests. The estimated resistance with new bulbous bow and lengthened stern was reduced by 4.8% in the 2-dimensional analysis and 17.4% in the 3-dimensional analysis in comparison of conventional ship. The average reduction of resistance was estimated about 10%. Maneuvering character of modified hull form was found to satisfy all regulations under IMO. The remodeling of tuna purse seiner can not only improve fishing performance but also contribute to reduction of operating cost by saving energy for the fisheries industry.

수치시뮬레이션기법을 이용한 거위목 벌브의 저항성능에 관한 연구 (A Study on the Resistance Performance of the Goose Neck Bulbous Bow by Numerical Simulation Method)

  • 유진원;이영길;정광열
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.689-696
    • /
    • 2010
  • Bulbous bow is one of the important design factors on the design of fore-body hull form. Using the interference technique of ship waves, the bulbous bow can decrease the wave resistance of ship. Recently, the goose neck bulb is applied mainly for high speed vessels like passenger ships and ferries etc.. Also, the goose neck bulb is applied for relatively high speed merchant vessels like container ships and LNG carriers. However, existing research papers about the goose neck bulb are not enough as reference data for the design of bow hull form. In this study, numerical calculations are carried out to investigate the bow wave characteristics of a high speed ferry with a normal high nose bulb or a goose neck bulb. By comparing the pressure distributions on the hull surface and the wave systems near the bow, the features of wave resistance reduction are discussed. Also, Numerical calculations were carried out for a series of goose neck bulbs to figure out the optimum bulb size. The maximum reduction rate of pressure resistance for the fore-body is achievable up to 8% by adopting the goose neck bulb in the present calculation.

소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구 (A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel)

  • 이종현;박동우
    • 해양환경안전학회지
    • /
    • 제27권4호
    • /
    • pp.538-549
    • /
    • 2021
  • 본 연구에서는 Froude 수 1.0으로 운항하는 길이 약 10m 급 소형 고속선박의 에너지 효율 설계를 위해 선미부에 트림 탭을 부착하였고, 선저 면과의 각도에 따른 항주자세와 저항성능의 변화를 살펴보았다. 성능 해석은 CFD 해석을 통해 수행되었으며, 축척에 의한 영향을 보기 위해 모형선과 실선에 대해 각각 해석을 수행 후 두 결과로부터 예측된 실선의 성능을 비교하였다. 나선에 대한 해석 결과는 두 결과가 전반적으로 유사하였고, 트림 탭이 부착된 경우 선저 면과의 각도가 동일할 때 자세 변화량이 달라 전 저항의 차이로 이어졌지만 자세에 따른 저항 변화 경향은 유사하였다. 이로부터 축척 효과가 있더라도 저항 저감 경향으로부터 최적 항주자세를 찾을 수 있으나, 트림 탭에 의한 자세 변화와 실선 주위 유동의 특성을 알기 위해서는 실선에 대한 직접적인 해석이 필요함을 알 수 있다.

폴리에틸렌 보트의 선형 개발에 관한 연구 (A Study on Hull Form Development of Polyethylene Boat)

  • 조석수
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4726-4732
    • /
    • 2013
  • 플레저 보트 선체는 주로 비강도가 큰 FRP로 제작되고 있으나 2000년대에 들어오면서 FRP 선체에 대한 환경오염 및 해양안전에 관한 법적 규제가 강화되고 있어 FRP가 선체재료로서의 활용도가 감소되고 있다. 폴리에틸렌 선체는 FRP 선체의 단점을 보완하면서 가격도 염가여서 차세대 플레저 보트 선체 재료로 거론되고 있다. 개발 폴리에틸렌 보트의 최종 선형은 개발 보트를 둘러싸고 있는 설계 환경과 개념을 분석한 결과 도시적 이미지의 샤프한 선형이었다. 또한, 선형 설계에 필요한 외형 주요 치수는 기존의 실적선을 기초로 결정한 결과, 전장 5.9m, 빔 2.3m, 형심 1.3m 흘수 0.6m이었다. 개발 보트에 대한 선형 디자인한 후 Orca 3D로 엔진 출력을 예측한 결과 개발 보트는 최대속도 30노트에 대하여는 60kW의 엔진이 필요하다. 한편, 활주상태에서 최소 총저항을 나타내는 엔진출력은 28.5kW이고 선속은 19노트로서 설계속도 25노트보다 낮은 속도에서 운전되어져야 보트를 경제적으로 운영할 수 있다.

Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance

  • Atlar, Mehmet;Seo, Kwangcheol;Sampson, Roderick;Danisman, Devrim Bulent
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.302-312
    • /
    • 2013
  • While displacement type Deep-V mono hulls have superior seakeeping behaviour at speed, catamarans typically have modest behaviour in rough seas. It is therefore a logical progression to combine the superior seakeeping performance of a displacement type Deep-V mono-hull with the high-speed benefits of a catamaran to take the advantages of both hull forms. The displacement Deep-V catamaran concept was developed in Newcastle University and Newcastle University's own multi-purpose research vessel, which was launched in 2011, pushed the design envelope still further with the successful adoption of a novel anti-slamming bulbous bow and tunnel stern for improved efficiency. This paper presents the hullform development of this unique vessel to understand the contribution of the novel bow and stern features on the performance of the Deep-V catamaran. The study is also a further validation of the hull resistance by using advanced numerical analysis methods in conjunction with the model test. An assessment of the numerical predictions of the hull resistance is also made against physical model test results and shows a good agreement between them.