• Title/Summary/Keyword: Hsp104

Search Result 20, Processing Time 0.033 seconds

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

$^{13}C$ NMR Studies of Metabolic Pathways Regulated by HSP104 in Saccharomyces cerevisiae

  • 이경희;강수임;Susan Lindquist
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 1998
  • HSP104 protein in Saccharomyces cerevisiae is known to provide thermotolerance when induced by various kinds of stresses, such as a mild heat shock, ethanol, and hypoxia. It helps cells survive at an otherwise lethal temperature. Mechanisms by which HSP104 protein works are yet to be elucidated. In order to understand a molecular basis of thermotolerance due to HSP104 protein induced by a mild heat shock, studies on respiratory pathways were carried out in the wild type as well as in the hsp104 deleted mutant. Especially the degree of 13C-acetate incorporation into glutamate-C4 was examined for both strains using 13C-13C homonuclear spin coupling measurements, since glutamate is in a rapid equilibrium with α-ketoglutarate in the TCA cycle. In addition, the temperature effects on the rate of 13C incorporation are compared with or without HSP104 protein expressed. Finally, the inhibitory effect of HSP104 on the respiration pathway was confirmed by the measurements of oxygen consumption rates for both strains.

Protectors of Oxidative Stress Inhibit AB(1-42) Aggregation in vitro

  • Kong, Byung-Mun;Ueom, Jeong-Hoon;Kim, In-Kyung;Lim, Dong-Yeol;Kang, Jong-Min;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1773-1777
    • /
    • 2002
  • Reactive oxygen species(ROS) have been investigated to have pivotal roles on amyloidogenecity of $\beta-amyloidpeptide(A\beta)$, the major component of senile plaques in Alzheimer's disease(AD) brain. Addition of radical scavengers is one of the on-going strategies for therapeutic treatment for AD patients. Hsp104 protein including two ATP binding sites from Saccharomyces cerevisiae, as a molecular chaperone, was known to function as a protector of ROS generation when exposed to oxidative stress in our previous study. This observation has led us to investigate Hsp104 protein as a molecular mediator of $A{\beta}$ aggregation in this study. We have developed a new way of expression for Hsp104 protein using GST-fusion tag. As we expected, formation of $A{\beta}$ aggregate was protected by wild type Hsp104 protein, but not by the two ATP-binding site mutant, based on Thioflavin-T fluorescence. Interestingly, Hsp104 protein was observed to keep $A{\beta}$ from forming aggregates independent of ATP binding. On the other hand, disaggregation of $A{\beta}$ aggregates by wild type Hsp104 was totally dependent on the presence of ATP. On the other hand, mutant Hsp104 with two ATP binding sites altered exhibited no inhibition. Another effective antioxidant, hydrazine analogs of curcumin were also effective in $A{\beta}$ fibrilization as protectors against oxidative stress. Based on these observations we conclude that Hsp104 and curcumin derivatives, as protectors of oxidative stress, inhibit $A{\beta}$ aggregation in virto and can be candidates for therapeutic approaches in cure of some neurodegenerative disease.

Protection of Metal Stress in Saccharomyces cerevisiae: Cadmium Tolerance Requies the Presence if Two ATP-Binding Domains of Hsp 104 Protein

  • Lee, Gyeong Hui;Eom, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.514-518
    • /
    • 2001
  • We have explored the importance of two ATP binding domains of Hsp104 protein in protection of yeast cells from cadmium exposure. In the previous study we have discovered that the presence of two ATP binding sites was essential in providing heat sh ock protection as well as rescuing cells from oxidative stress. In this paper we first report wild type cell with functional hsp104 gene is more resistant to cadmium stress than hsp104-deleted mutant cell, judging from decrease in survival rates as a result of cadmium exposure. In order to demonstrate functional role of two ATP binding sites in cadmium defense, we have transformed both wild type (SP1) and hyperactivated ras mutant (IR2.5) strains with several plasmids differing in the presence of ATP binding sites. When an extra copy of functional hsp104 gene with both ATP binding sites was overexpressed with GPD-promoter, cells showed increased survival rate against cadmium stress than mutants with ATP binding sites changed. The degree of protection in the presence of two ATP binding sites was similarly observed in ira2-deleted hyperactivated ras mutant, which was more sensitive to oxidative stress than wild type cell. We have concluded that the greater sensitivity to cadmium stress in the absence of two ATP binding sites is attributed to the higher concentration of reactive oxygen species (ROS) produced by cadmium exposure based on the fluorescence tests. These findings, taken all together, imply that the mechanism by which cadmium put forth toxic effects may be closely associated with the oxidative stress, which is regulated independently of the Ras-cAMP pathway. Our study provides a better understanding of cadmium defense itself and cross-talks between oxidative stress and metal stress, which can be applied to control human diseases due to similar toxic environments.

Contribution of HSP90 Cleavage to the Cytotoxic Effect of Suberoylanilide Hydroxamic Acid In Vivo and the Involvement of TXNIP in HSP90 Cleavage

  • Sangkyu Park;Dongbum Kim;Haiyoung Jung;In Pyo Choi;Hyung-Joo Kwon;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Heat shock protein (HSP) 90 is expressed in most living organisms, and several client proteins of HSP90 are necessary for cancer cell survival and growth. Previously, we found that HSP90 was cleaved by histone deacetylase (HDAC) inhibitors and proteasome inhibitors, and the cleavage of HSP90 contributes to their cytotoxicity in K562 leukemia cells. In this study, we first established mouse xenograft models with K562 cells expressing the wild-type or cleavage-resistant mutant HSP90β and found that the suppression of tumor growth by the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was interrupted by the mutation inhibiting the HSP90 cleavage in vivo. Next, we investigated the possible function of thioredoxin interacting protein (TXNIP) in the HSP90 cleavage induced by SAHA. TXNIP is a negative regulator for thioredoxin, an antioxidant protein. SAHA transcriptionally induced the expression of TXNIP in K562 cells. HSP90 cleavage was induced by SAHA also in the thymocytes of normal mice and suppressed by an anti-oxidant and pan-caspase inhibitor. When the thymocytes from the TXNIP knockout mice and their wild-type littermate control mice were treated with SAHA, the HSP90 cleavage was detected in the thymocytes of the littermate controls but suppressed in those of the TXNIP knockout mice suggesting the requirement of TXNIP for HSP90 cleavage. We additionally found that HSP90 cleavage was induced by actinomycin D, β-mercaptoethanol, and p38 MAPK inhibitor PD169316 suggesting its prevalence. Taken together, we suggest that HSP90 cleavage occurs also in vivo and contributes to the anti-cancer activity of various drugs in a TXNIP-dependent manner.

Effects of low temperature-adapted Saccharomyces cerevisiae Y297 strain and fermentation temperature on the quality characteristics of Yakju (저온 적응성 효모와 발효온도에 따른 약주의 품질특성 변화)

  • Seo, Dong-Jun;Yeo, Soo-Hwan;Mun, Ji-Young;Baek, Seong Yeol
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.666-672
    • /
    • 2016
  • The objective of this study was to evaluate the effects of low temperature-adapted Saccharomyces cerevisiae Y297 and fermentation temperatures on the quality of Yakju brewed. Physicochemical properties of Yakju brewed were compared pH, total acidity, ethanol, free amino acid, organic acid contents, and volatile flavor compounds in S. cerevisiae Y297 with control treatment. Cooked non-glutinous rice and saccharogenic amylase in koji were mixed with ethanol-producing yeasts and then fermented at $15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ for 20 days. Yakju brewed using the Y297 treatment showed the highest ethanol yield (17.9%) at $20^{\circ}C$. Expression of heat shock protein (HSP) 104 was evaluated by immunoblotting as an indication of adaptation to low temperatures ($15^{\circ}C$); levels of the HSP104 protein were higher in the Y297 treatment than in the control. Organic acid analysis showed that the lactic acid content of Yakju brewed using the control was the highest at $25^{\circ}C$. Finally, free amino acid analysis showed that the Y297 treatment had a higher proportion of essential amino acids than the control. Overall, these results indicate that S. cerevisiae Y297 could be used as a suitable yeast for Yakju brewed under low temperature ($15^{\circ}C$) condition.