• Title/Summary/Keyword: Hsp family

Search Result 59, Processing Time 0.031 seconds

Cloning and Characterization of the HSP70 Gene, and Its Expression in Response to Diapauses and Thermal Stress in the Onion Maggot, Delia antiqua

  • Chen, Bin;Kayukawa, Takumi;Monteiro, Antonia;Ishikawa, Yukio
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.749-758
    • /
    • 2006
  • The cytosolic members of the HSP70 family of proteins play key roles in the molecular chaperone machinery of the cell. In the study we cloned and sequenced the full-length cDNA of Delia antiqua HSP70 gene, which is 2461 bp long and encodes 643 a.a. with a calculated molecular mass of 70,787 Da. We investigated gene copies of cytosolic HSP70 members of 4 insect species with complete genome available, and found that they are quite variable with species. In order to characterize this protein we carried out an alignment and a phylogenetic analysis with 41 complete protein sequences from insects. The analysis divided the cytosolic members of the family into two classes, HSP70 and HSC70, distinguishable on the basis of 15 residues. HSP70 class members were slightly shorter in length and smaller in molecular mass relative to the HSC70 class members, and the conservative and functional regions in these sequences were documented. Mainly, we investigated the expression of Delia antiqua HSP70 gene, in response to diapauses and thermal stresses. Both summer and winter diapauses elevated HSP70 transcript levels. Cold-stress led to increased HSP70 expression levels in summer- and winter-diapausing pupae, but heat-stress elevated the levels only in the winter-diapausing pupae. In all cases, the expression levels, after being elevated, gradually decreased with time. HSP70 expression was low in non-diapausing pupae but was up-regulated following cold- and heat-stresses. Heat-stress gradually increased the mRNA level with time whereas cold-stress gradually decreased levels after an initial increase.

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

Isolation and Characterization of a CDNA Encoding a Protein Homologous to the Mouse 70 kDa Heat Shock Protein (생쥐 섬 유아세포에서 70 kDa 고온충격 단백질의 CDNA 클로닝과 염기서열 분석)

  • 김창환;정선미최준호
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.203-210
    • /
    • 1992
  • Hsp70, a 70 kDa protein, is the maior protein expressed when cells are heat-shocked. A cDNA library from mouse ID13 cells was screened with the human hsp70 gene as a probe, and a positive clone was obtained. The positive clone was subcloned into puc19 and the precise restriction was obtained. The CDNA was sequenced by the Sanger's dideoxv termination method. Single open reading frame that codes for a protein of 70 kDa was found. The DNA sequence of the cloned mouse DNA shows great homology (66-90%) with other mouse hsp70 genes and somewhat less homology (50",) with E. coli hsp70 gene (dnak). With the exception of one amino acid, the protein sequence deduced from the CDNA is identical to the mouse that shock cognate protein 70 (hsc70) that is constitutivelv expressed at normal temperature. The result suggests that the cloned CDNA encodes a hsc70 family rather than a heatinducible family.mily.

  • PDF

Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

  • Jun, Kyu-Yeon;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.453-468
    • /
    • 2016
  • There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.

Effect of Cryopreservation on the Heat Shock Protein 90 Expression in Mouse Ovarian Tissue (동결보존이 생쥐 난소 조직 내 Heat Shock Protein 90의 발현에 미치는 영향)

  • Lee, Sun-Hee;Park, Yong-Seog;Yeum, Hye-Won;Song, Gyun-Jee;Han, Sang-Chul;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • Objective : Heat shock protein family is related to protective mechanism of cells by environmental changes. This study was performed to evaluate the effect of cryopreservation on the heat shock protein 90 (Hsp90) expression in mouse ovarian tissue. Methods : Cryopreservation of mouse ovarian tissue was carried out by slow freezing method. The mRNA level of Hsp90 expression in both fresh and cryopreserved mouse ovarian tissue was analyzed by RT-PCR. The protein expression of Hsp90 was evaluated by Western blot analysis and immunohistochemistry. Results: The mRNA and protein of Hsp90 were expressed in both fresh and cryopreserved mouse ovarian tissue. The amount of Hsp90 mRNA was increased in cryopreserved ovarian tissue after 60 and 90 minutes after thawing and incubation. The amount of Hsp90 protein was increased in the cryopreserved ovarian tissue after 6 hours of the incubation in Western blot analysis. In immunohistochemical study, Hsp90 protein was localized in cytoplasm of oocytes and granulosa cells. Significant level of immunoreactive Hsp90 protein was detected in theca cells contrast to the weak expression in ovarian epithelial cells. Conclusion: This results showed the increase of Hsp90 expression in both mRNA and protein level in the cryopreserved mouse ovarian tissue. It can be suggested that Hsp90 may play a role in the protective or recovery mechanism against the cell damage during cryopreservaion.

The Inducible form of Heat Shock Protein 70 (Hsp70) is Expressed in the Rat Cerebellar Synapses in Normal Condition (흰쥐 소뇌 정상 연접에서 열충격단백질70(HSP70)의 표현)

  • Cho Sun-Jung;Jung Jae-Seob;Jin IngNyol;Jung Seung Hyun;Park In Sick;Moon Il Soo
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.607-612
    • /
    • 2005
  • Heat shock protein 70 (HSP70) is a multigene family composed of constitutively expressed members(Hsc70) and stress-inducible members (Hsp70). In the mammalian nervous system, a considerable amount of HSPs is also synthesized under normal conditions suggesting that they play an important role in the metabolism of unstressed cells. In this study we examined the expression of Hsp70 in the synapses of rat cerebellar neurons. Immunohistochemistry using specific antibodies revealed that both Hsp70 and Hsc70 are expressed in the cerebellar tissue, with strongest expression in Purkinje cells followed by granule cells. Neurons in deep cerebellar nuclei were also intensely stained by Hsp70 antibody. Immunocytochemical stainings of cultured cerebellar cells showed that Hsp70 is expressed in both Purkinje and granule cells. The expression was punctate in the soma and along dendritic trees, and the punctae were colocalized with those of PSD95, a postsynaptic marker. Immunoblotting also indicates that Hsp70 is associated with the postsynaptic density fraction. Taken together, our results indicate that the Hsp70 is expressed in cerebellar neurons in normal conditions, and that some are localized in the synapses.

Bag-1L is a Stress-withstand Molecule Prevents the Downregulation of Mcl-1 and c-Raf Under Control of Heat Shock Proteins in Cisplatin Treated HeLa Cervix Cancer Cells

  • Ozfiliz, Pelin;Arisan, Elif Damla;Coker-Gurkan, Ajda;Obakan, Pinar;Eralp, Tugce Nur;Dinler-Doganay, Gizem;Palavan-Unsal, Narcin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4475-4482
    • /
    • 2014
  • Background: Cisplatin, a DNA damaging agent, induces apoptosis through increasing DNA fragmentation. However, identification of intrinsic resistance molecules against Cisplatin is vital to estimate the success of therapy. Bag-1 (Bcl-2-associated anthanogene) is one anti-apoptotic protein involved in drug resistance impacting on therapeutic efficiency. Elevated levels of this protein are related with increase cell proliferation rates, motility and also cancer development. For this reason, we aimed to understand the role of Bag-1 expression in Cisplatin-induced apoptosis in HeLa cervix cancer cells. Cisplatin decreased cell viability in time- and dose-dependent manner in wt and Bag-1L+HeLa cells. Although, $10{\mu}M$ Cisplatin treatment induced cell death within 24h by activating caspases in wt cells, Bag-1L stable transfection protected cells against Cisplatin treatment. To assess the potential protective role of Bag-1, we first checked the expression profile of interacting anti-apoptotic partners of Bag-1. We found that forced Bag-1L expression prevented Cisplatin-induced apoptosis through acting on Mcl-1 expression, which was reduced after Cisplatin treatment in wt HeLa cells. This mechanism was also supported by the regulation of heat shock protein (Hsp) family members, Hsp90 and Hsp40, which were involved in the regulation Bag-1 interactome including several anti-apoptotic Bcl-2 family members and c-Raf.

Expression of GFP Gene Driven by the Olive Flounder (Paralichthys olivaceus) hsc70 Promoter in Trangenic Medaka (Oryzias latipes) (넙치 (Paralichthys olivaceus) 열충격 유전자 hsp70 조절부위에 의한 형광단백질의 발현)

  • Lee, Jeong-Ho;Kim, Jong-Hyun;Noh, Jae Koo;Kim, Hyun Chul;Kim, Woo-Jin;Kim, Young-Ok;Kim, Kyung-Kil
    • Korean Journal of Ichthyology
    • /
    • v.19 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • Heat shock proteins (HSPs) are a family of highly conserved proteins playing an important role in the functioning of unstressed and stressed cells. The HSP70 family, the most widely studied of the hsps, is constitutively expressed (hsc70) in unstressed cells and is also induced in response to stressors (hsp70), especially those affecting the protein machinery. The HSP/HSC70 proteins act as molecular chaperones and are crucial for protein functioning, including folding, intracellular localization, regulation, secretion, and protein degradation. Here, we report the identification and characterization of the putative amino acid sequence deduced from one cDNA clone identified as heat shock protein 70. The alignment showed that the putative sequence is 100% identical to the heat shock protein 70 cognate (HSC 70) of olive flounder. The 5'-flanking region sequence (approximately 1 kb) ahead of the hsc70 gene was cloned by genome walking and a putative core promoter region and transcription elements were identified. We characterized the promoter of the olive flounder hsc70 gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos.

Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice

  • Kim, Hyun-Jeong;Jung, Ji-In;Kim, Young-Kyung;Lee, Jae-Seon;Yoon, Young-Wook;Kim, June-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.