• Title/Summary/Keyword: Hox gene

Search Result 32, Processing Time 0.022 seconds

Hox Genes are Differentially Expressed during Mouse Placentation

  • Park, Sung-Joo;Lee, Ji-Yeon;Ma, Ji-Hyun;Kim, Helena Hye-Soo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.169-174
    • /
    • 2012
  • The placenta is an extraembryonic tissue that is formed between mother and fetus and mediates delivery of nutrients and oxygen from the mother to the fetus. Because of its essential role in sustaining the growth of the fetus during gestation, defects in its development and function frequently result in fetal growth retardation or intrauterine death, depending on its severity. Vertebrate Hox genes are well known transcription factors that are essential for the proper organization of the body plan during embryogenesis. However, certain Hox genes have been known to be expressed in placenta, implying that Hox genes not only play a crucial role during embryonic patterning but also play an important role in placental development. So far, there has been no report that shows the expression pattern of the whole Hox genes during placentation. In this study, therefore, we investigated the Hox gene expression pattern in mouse placenta, from day 10.5 to 18.5 of gestation using real-time RT-PCR method. In general, the 5' posterior Hox genes were expressed more in the developing placenta compared to the 3' Hox genes. Statistical analysis revealed that the expression of 15 Hox genes (Hoxa9, -a11, -a13/ -b8, -b9/ -c6, -c9, -c13/ -d1, -d3, -d8, -d9, -d10, -d11, -d12) were significantly changed in the course of gestation. The majority of these genes showed highest expression at gestational day 10.5, suggesting their possible role in the early stage during placental development.

A Probabilistic Approach to the Assessment of Phylogenetic Conservation in Mammalian Hox Gene Clusters

  • Stojanovic, Nikola;Dewar, Ken
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.118-123
    • /
    • 2005
  • With the increasing availability of mammalian genome sequences it became possible to use large scale phylogenetic analysis in order to locate potentially functional regions. In this paper we describe a new probabilistic method for the characterization of phylogenetic conservation in mammalian DNA sequences. We have used this method for the analysis of Hox gene clusters, based on the alignment of 6 species, and we constructed a map of for indicating short and long conserved fragments and their positions with respect to the known locations of Hox genes and other elements, sometimes showing surprising layouts.

  • PDF

Differential Expression of Hox and Notch Genes in Larval and Adult Stages of Echinococcus granulosus

  • Dezaki, Ebrahim Saedi;Yaghoobi, Mohammad Mehdi;Taheri, Elham;Almani, Pooya Ghaseminejad;Tohidi, Farideh;Gottstein, Bruno;Harandi, Majid Fasihi
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different developmental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all developmental stages. Nevertheless, significant fold differences in the expression level was documented in the juvenile worm with 3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. The notch gene was expressed at all developmental stages of E. granulosus; however, the fold difference was significantly increased at the microcysts in monophasic culture medium and the germinal layer of infected sheep in comparison with other stages. The findings demonstrated that the 2 aforementioned genes evaluated in the present study were differentially expressed at different developmental stages of the parasite and may contribute to some important biological processes of E. granulosus.

Comparison of Expression Profiles of HOX Gene Family in Human Embryonic Stem Cells and Selected Human Fetal Tissues

  • Hwang Jung-Hye;Kim Kye-Seong;Kim Byung-Ju;Kwon Hee-Sun;Lee Man-Ryoul;Park Moon-Il;Jang Se-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.556-561
    • /
    • 2006
  • The HOX genes coding homeodomain proteins have been suggested as a candidate molecular switch that determines the fates of cells during embryonic development and patterning. It is believed that a set of differentiation-specific HOX genes enter into a turn-on state during tissue differentiation, in contrast to stem cell-specific HOX genes that enter into a turn-off state. However, comprehensive data of expression profiles of HOX genes in human embryonic stem cells (hESC) and differentiated embryonic tissues are not available. In this study, we investigated the expression patterns of all 39 HOX genes in hESC and human fetal tissues and analyzed the relationships between hESC and each tissue. Of the 39 genes, 18 HOX genes were expressed in stem cells, and diverse expression patterning was observed in human fetal tissues when compared with stem cells. These results indicate that HOX genes could be main targets for switching of stem cell differentiation into tissues.

Synthetic Maternal Stress Hormone Can Modulate the Expression of Hox Genes

  • Yu, Sook-Jin;Lee, Ji-Yeon;Kim, Sang-Hoon;Deocaris, Custer C.;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 2009
  • All living things have been developed efficient strategies to cope with external and internal environmental changes via a process termed 'homeostasis'. However, chronic prenatal maternal stress may significantly contributes to pregnancy complications by disturbing hypothalamic-pituitary-adrenal (HPA) axis and the automatic nervous system (ANS), and results in unfavorable development of the fetus. Dysregulation of these two major stress response systems lead to the increased secretion of the glucocorticoids (GCs) which are known to be essential for normal development and the maturation of the central nervous system. As Hox genes are master key regulators of the embryonic morphogenesis and cell differentiation, we aimed to determine the effects of dexamethasone, a potent synthetic glucocorticoid, on gene expression in mesenchymal stem cell C3H10T1/2. Analysis of 39 Hox genes based on reverse transcription PCR (RT-PCR) method revealed that the expression patterns of Hox genes were overall upregulated by long dexametasone treatment. These results indicate that maternal stress may have a deleterious effect on early developing embryo through the stress hormone, glucocorticoid.

  • PDF

Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes

  • Kalyani, Ruthala;Lee, Ji-Yeon;Min, Hyehyun;Yoon, Heejei;Kim, Myoung Hee
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following $TGF-{\beta}2$ treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.

Isolation of Putative in vivo Hoxc8 Downstream Target Genes Using ChIP-Cloning Method

  • Chung, Hyun-Joo;Kang, Myeng-Mo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • Hox genes are known to be transcription factors controlling vertebrate pattern formation along the anteroposterior body axis by regulating many target gene expressions during vertebrate embryogenesis. In order to isolate in vivo Hox responsive target genes, ChIP-cloning technique has been applied using Hoxc8 antibody. Here murine embryo of day 11.5 post coitum (E11.5) highly expressing Hoxc8 gene was used after removing head and tail portions where Hoxc8 is rarely expressing. After fixation with formaldehyde, the chromatin DNAs harboring bound proteins were isolated. After sonication, about 0.5- to 1 Kb chromatin DNAs were immunoprecipitated with anti Hoxc8 antibody. After removing the bound proteins with proteinase K, DNAs were isolated, cloned into the pBluescsript II SK vector, and then sequenced. Total 33 random clones sequenced were anlalyzed to be located at 12 different genomic regions. Among these, 8 turned out to be introns and 4 were intergenic regions localized in random chromosomes. The base composition of total cloned genomic sequences (6608 bp) were AT-rich, i.e., 40% GC. When the Hoxc8 core binding sites, such as TAAT, ATTA, TTAT, and ATAA were analyzed total number of 55, 45, 54, and 55 were found, respectively, which are than twice as many as expected number of 26. Although this in silico analysis does not mean that the ChIP-cloned sequence is real Hoxc8 regulatory element in vivo, these results strongly imply that the DNA fragments cloned through chromatin immunoprecipitation could be very much likely the putative Hoxc8 downstream target genes.

  • PDF