• Title/Summary/Keyword: Hovering Information

Search Result 37, Processing Time 0.023 seconds

A Study on Yaw Control of Multi-Fan Hovering with SRFIMF (SRFIMF를 이용한 멀티팬 부상기의 YAW제어에 관한 연구)

  • 박선국;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.361-370
    • /
    • 1992
  • A controller of the hovering VTOL aircraft with four fan is constructed by SRFIMF(State Rate Feedback Implicit Model-Following)theory, in which feedback state are angle acceleration, angle velocity and angle position of the aircraft during hover With yaw control of the system, characteristics of the hovering aircraft can be analyzed by changing states feedback gain and sponse provides robust stable hovering system.

  • PDF

Design and Implementation of A Hovering AUV with A Rotatable-Arm Thruster (회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현)

  • Shin, Dong H.;Bae, Seol B.;Joo, Moon G.;Baek, Woon-Kyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2014
  • In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

Sliding mode control for helicopter attitude regulation at hovering (Hovering에서의 헬리콥터 자세제어를 위한 슬라이딩 모드 제어)

  • Im, Kyu-Mann;Ham, Woon-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.563-568
    • /
    • 1997
  • 본 논문에서는 약간의 가정하에 리모트 제어용 모형 헬리콥터의 동역학방정식을 유도하였으며, 이를 토대로하여 헬리콥터의 자세안정을 위한 제어 알고리듬을 제안하였다. 제어이론으로서는 파라메타의 변화및 외란에 강인한 가변구조 제어이론을 활용하였다. 본 제어 알고리듬에서는 헬리콥터의 위치이동 제어에 대하여서는 다루지를 못하였으며, 단지 헬리콥터의 hovering 상태에서의 자세 안정화에만 촛점을 두어 제어 알고리듬을 제안하였다. 컴퓨터 모사를 통하여, 제안된 제어 제어 알고리듬의 타당성을 보였으며, 약 2-3초의 시간이 경과된 이후 자세가 안정화 됨을 볼 수 있었다.

  • PDF

Hovering System for Autonomous Flight of Multi-copter (멀티콥터의 자율비행을 위한 호버링 시스템)

  • Kim, Hyung-Su;Park, Byeong-Ho;Han, Young-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.49-56
    • /
    • 2018
  • As the era of the 4th industrial revolution comes, there is a growing interest in the use of UAVs. While various technologies are being developed using drones, controlling flight of drones is the most basic. Hovering control is essential in order to enable autonomous flight, especially during flight control of drones. In this paper, we design drones based on ATmega2560, Sonar, Optical Flow, and acceleration / gyro 6 axis sensor for drones hovering control, and developed horizontal control, altitude control, position tracking and fixed algorithm based on PID control. In this research, in order to measure the objective result of the drone, keeping the altitude immediately after the drone takes off according to the time, measure the movement value until the position is fixed and stable hovering is maintained and compared analyzed. Experimental results show that the drones can stably hover within 4cm horizontal and 2cm vertical from 50cm above the reference coordinates.

A robust controller design for attitude control of hovering vehicle (수직부상기의 자세제어를 위한 강인한 제어기의 설계)

  • 최연욱;이형기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.41-49
    • /
    • 1997
  • This paper deals with the attitude control of a self-made VTOL vehicle which is round shape and has four fans and motors. Although hovering mechanisms are suitable for field work at a mountainous region or a building site etc., it is known that modeling the structure of the plant is quite difficult due to its unstable or uncertain characteristics. So, a robust controller is requried in order to cope with these uncertainties. WE first model the structure of the plant under the actual hovering setting and then determine the uncertainty of the acquired mathematical model by using system identification method as exactly as possible. We adopt the $H^{\infty}$ theory as a control algorithm because of its availability, and the structure of two-degree-of-freedom is used as a basic feedback control system to improve the transient response of the plant. Finally, we show the appropriateness of the designed controller through simulations and experiments. That is, the proposed VTOL system is able to maintain its roubust performance in spite of parameter variations and existing disturbances..

  • PDF

Quadcopter Hovering Control Using Deep Learning (딥러닝을 이용한 쿼드콥터의 호버링 제어)

  • Choi, Sung-Yug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.263-270
    • /
    • 2020
  • In this paper, In this paper, we describe the UAV system using image processing for autonomous quadcopters, where they can apply logistics, rescue work etc. we propose high-speed hovering height and posture control method based on state feedback control with CNN from camera because we can get image of the information only every 30ms. Finally, we show the advantages of proposed method by simulations and experiments.

Onboard Active Vision Based Hovering Control for Quadcopter in Indoor Environments (실내 환경에서의 능동카메라 기반 쿼더콥터의 호버링 제어)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • In this paper, we describe the design and performance of UAV system toward compact and fully autonomous quadrotors, where they can complete logistics application, rescue work, inspection tour and remote sensing without external assistance systems like ground station computers, high-performance wireless communication devices or motion capture system. we propose high-speed hovering flyght height control method based on state feedback control with image information from active camera and multirate observer because we can get image of the information only every 30ms. Finally, we show the advantages of proposed method by simulations and experiments.

Drone Indoor position recognition and hovering technology based on optical flow for Finger printing (BLE Finger printing 연계를 위한 optical flow기반 Drone 실내 위치인식 및 호버링)

  • Lee, Joon beom;Lee, Dohee;Seo, Hyo-seung;Jo, Ju-yeon;Son, Bong-ki;Lee, Jae ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.86-87
    • /
    • 2016
  • 본 논문에서는 optical flow sensor를 이용하여 실내의 바닥 영상인식를 통한 영상처리기법을 이용해 움직임 없는 hovering을 할 수 있는 방법을 제안한다. 또한 optical flow와 BLE finger printing 기법을 혼합해 위치 인식 정밀도를 높일 수 있다. 본 고에서는 optical flow sensor와 BLE finger printing의 두 기술을 혼합하면 드론 스스로 실내에서 정밀도 높은 위치인식이 가능 하며 실외에서만 사용할 수 있는 GPS 비행모드를 대신 할 수 있어 실내에서 자동 경로 비행이 가능하게 하고 위치 안내, 실내 방송촬영, 이동식 CCTV등 질 높은 서비스를 제공하고자 한다.

Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability (Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험)

  • Kim, Dong-Gyun;Lee, Byoungjin;Lee, Young Jae;Sung, Sangkyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.