• Title/Summary/Keyword: Housing Prices

Search Result 234, Processing Time 0.029 seconds

The Spillover Effect of Public Hosing Policy on Rental Housing Market: The Case of Seoul, Korea (공공임대주택이 주변 전세시장에 미치는 효과: 서울시 장기전세주택(SHIFT)의 경우)

  • Yang, Jun-Seok
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.405-418
    • /
    • 2017
  • SHIFT is public rental housing policy introduced by Seoul Metropolitan in 2007, which works as Chonsei(korean unique deposit rental system). This paper examines the effect of SHIFT on Chonsei prices of neighborhood apartments. To estimate the change in prices of Chonsei after the provision of SHIFT, I collect data on Chonsei prices of apartments within a 5km radius from the SHIFT housings. Summary of main results are following. Chonsei prices of the apartments within a 2-3km radius decreased by 4.4% after the provision of SHIFT housings. In contrast, when it comes to apartments within a 1-2km radius, I can't find the stochastic relationship between the provision of SHIFT hosing and price changes. This results can be explained by "Offset effects" caused by real estate development. Provision of SHIFT can sequentially induce nearby area's development, which plays a factor in the effect of price increases. And this offset effects varies in each apartment complex depending on demand for Chonsei and supply of the SHIFT.

Development of Optimal Real Estate Decision Support System by Geographic Information on Real Estate Appraisal - Using Internet and GIS - (부동산 감정평가에 있어 공간정보를 활용한 최적의 부동산 의사결정지원 시스템 개발 - 인터넷과 GIS를 활용하여 -)

  • Kim Han-Su;Na Sang-Youp
    • Journal of the Korean housing association
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2004
  • This study systematized synthetically to use internet GIS and real estate appraisal method in computing system for the real estate decision. First, indicated the method of using GIS and databases to appraise the real estate by using the cost approach. Second, used the artificial neural network to predict the change of land prices and the artificial neural network convinced us that it indicates easily the result of land prices without complicated processes. Third, examined land prices using the artificial neural network but there is limits for the land price prediction because of difficult data gathering. also, this study may heighten information levels of the real estate field according to 21th century information level if use actively a internet, information users who should pay much moneys in existent real estate decisions may can approach easily.

A Comparative Study on the Goodness of Fit in Spatial Econometric Models Using Housing Transaction Prices of Busan, Korea (부산시 실거래 주택매매 가격을 이용한 공간계량모형의 적합도 비교연구)

  • Chung, Kyoun-Sup;Kim, Sung-Woo;Lee, Yang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • The OLS(ordinary least squares) method is widely used in hedonic housing models. One of the assumptions of the OLS is an independent and uniform distribution of the disturbance term. This assumption can be violated when the spatial autocorrelation exists, which in turn leads to undesirable estimate results. An alterative to this, spatial econometric models have been introduced in housing price studies. This paper describes the comparisons between OLS and spatial econometric models using housing transaction prices of Busan, Korea. Owing to the approaches reflecting spatial autocorrelation, the spatial econometric models showed some superiority to the traditional OLS in terms of log likelihood and sigma square(${\sigma}^2$). Among the spatial models, the SAR(Spatial Autoregressive Models) seemed more appropriate than the SAC(General Spatial Models) and the SEM(Spatial Errors Models) for Busan housing markets. We can make sure the spatial effects on housing prices, and the reconstruction plans have strong impacts on the transaction prices. Selecting a suitable spatial model will play an important role in the housing policy of the government.

Impact of Large-scale Transportation Infrastructure Plan on the Housing Markets -Focus on GTX, Housing Consumer Confidence Index and Sales Prices- (광역교통시설 건설계획이 주택시장에 미치는 영향 -수도권 광역급행철도, 주택소비심리지수 및 실거래가 분석을 중심으로-)

  • Choi, Ui-Jin;Kim, Jung-Hwa
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.9-18
    • /
    • 2021
  • Constructing the Metropolitan Railway Express (the GTX) may have an impact on consumer confidence and housing sales price located near the planned route. This study looked at how consumers' psychology and housing prices change as the large-scale transport infrastructure plane was planned. Also, it looked at the relationship between consumer sentiment and housing prices to analyze the impact of new transportation facilities inflows. Using a correlation analysis, the relationship between the consumer sentiment index and the actual transaction price of apartments was identified. The impact of GTX on the consumer sentiment index and the actual transaction price of apartments was looked at using the Difference-in-Differences methodology. Our finding shows that the construction plan of a large-scale transportation infrastructure in the metropolitan area affects the sentiment of housing consumption and actual transactions. In a situation where the government is speeding up the construction of a wide-area transportation network such as GTX with the goal of becoming a city where people can commute to downtown Seoul within 30 minutes, policies that can stabilize the housing market in transportation hubs should be suggested.

Forecasting Korean housing price index: application of the independent component analysis (부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.271-280
    • /
    • 2017
  • Real-estate values and related economics are often the first read newspaper category. We are concerned about the opinions of experts on the forecast for real estate prices. The Box-Jenkins ARIMA model is a commonly used statistical method to predict housing prices. In this article, we tried to predict housing prices by combining independent component analysis (ICA) in multivariate data analysis and the Box-Jenkins ARIMA model. The two independent components for both the selling price index and the long-term rental price index were extracted and used to predict the future values of both indices. In conclusion, it has been shown that the actual indices and the forecast indices using ICA are more comparable to the forecasts of the ARIMA model alone.

Analysis of Factors Affecting Apartment Prices in Local Small and Medium Cities (지방 중소도시 아파트 가격에 영향을 미치는 요인 분석)

  • Choi, Ji-Woo;Lee, Young-Soo;Jeong, Sang-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.315-322
    • /
    • 2022
  • Apartments are being established as a universal housing type because of the perception that they are excellent in preservation of asset values and convenience. In this study, through multiple regression analysis, it is a thesis that explores whether it affects the housing market in Gimhae, a small and medium-sized city in the province, and how the price flow in neighboring cities has an effect. It is possible to examine how macroeconomic variables such as the balloon effect and the lowest interest rate caused by the government's tweezers regulation bring about changes in the housing market of small and medium-sized cities in local regions.

Effects of Seodaegu Station Development on the Surrounding Apartment Market: Focus on the Effects of Educational Environment (서대구역 개발이 주변 아파트 시장에 미치는 영향 분석: 교육환경이 미치는 영향을 중심으로)

  • Hyeontaek Park;Jinyhup Kim
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.89-106
    • /
    • 2024
  • Apartments constitute 64% of the housing type composition, representing the highest proportion among housing types. This proportion has been increasing annually. Given this trend, apartment prices are likely to have a significant impact on the national economy and people's livelihoods. This study examines the impact of the recent development of Seodaegu Station on the surrounding apartment market, with a specific focus on the effects of the educational environment. To this end, we conduct empirical analysis employing a hedonic price model and spatial autocorrelation analysis, based on actual transaction price data from the Ministry of Land, Infrastructure, and Transport. The study revealed three key findings: first, the development of Seodaegu Station positively impacted apartment prices. Second, this positive effect increases with the proximity to Seodaegu Station. Third, the enhancement of the educational environment nearby the Seodaegu Station development also positively influenced apartment prices. This study aims to serve as baseline research output for the public management of future metropolitan transportation facility development projects and for predicting apartment price trends.

Korean Public Rental Housing for Low-income Households: Main Outcome and Limitations

  • Jin, Mee-Youn;Lee, Seok-Je
    • Land and Housing Review
    • /
    • v.4 no.4
    • /
    • pp.303-316
    • /
    • 2013
  • This paper examines the achievements and limitations of housing assistance programs for low-income households. Korean public rental housing has been rapidly developing since 2000, and thereby achieved an increase in public rental housing stock, housing quality improvements, and the reduction of rent over-burden for low-income tenants. Despite some conflicting evidence, it appears that the provision of newly-built public rental housing has helped stabilize the prices of neighboring private rental housing units. But, as we are entering an era of one million long-term public rental housing units, we need to shift our focus from quantity-oriented provision to housing maintenance for tenants, and from cost-based rental housing to affordable rental housing and better access to rental housing for low-income tenants who are not beneficiaries of government assistance. Most of all, it is very important for local governments and the private sector to actively participate in the provision of public rental housing in order to ensure a stable rental housing market.

A Study on Characteristics of Determining Factor of Rental Price of Apartment by Sub-regions in Seoul (서울시 아파트 전세가격 결정요인의 권역별 특성에 관한 연구)

  • Lee, Seok-Ju;Lee, Joo-Hyung
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.19-27
    • /
    • 2011
  • This study aims to find the determining factors for apartment rental prices by using Stepwise Multiple Regression Analysis. In the process, differences among the groups and multicollinearity and correlation between the variables are examined using analysis of variance(ANOVA), correlation analysis and factor analysis. The comprehensive analysis of reliability of the variable and comprehensivization ensure objectivity. For this analysis, the characteristics of the determining factors for apartment rental prices by sub-regions in Seoul are as follows : First, the housing supply rate appears center of the central and the southwest region is influenced by the cultural and ecological environment, convenience, the size of the complex and reputation of the developer. Second, the northeast region is generally influenced by the regional economy, housing size, the density of the complex, well-known construction companies and relevant variables of individual housing and the density of the complex, physical and social environment, reputation of the developer, local economy and housing size. Lastly, the southeast region appears to be influenced by the local economy, the density of the complex, housing size and the educational environment.

A Spatial-Temporal Correlation Analysis of Housing Prices in Busan Using SpVAR and GSTAR (SpVAR(공간적 벡터자기회귀모델)과 GSTAR(일반화 시공간자기회귀모델)를 이용한 부산지역 주택가격의 시공간적 상관성 분석)

  • Kwon, Youngwoo;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.245-256
    • /
    • 2024
  • Since 2020, quantitative easing and easy money policies have been implemented for the purpose of economic stimulus. As a result, real estate prices have skyrocketed. In this study, the relationship between sales and rental prices by housing type during the period of soaring real estate prices in Busan was analyzed spatio-temporally. Based on the actual transaction price data, housing type, transaction type, and monthly data of district units were constructed. Among the spatio-temporal analysis models, the SpVAR, which is used to understand the temporal and spatial effects of variables, and the GSTAR, which is used to understand the effects of each region on those variables, were used. As a result, the sales price of apartment had positive effect on the sale price of apartment, row house, and detached house in the surrounding area, including the target area. On the other hand, it was confirmed that demand was converted to apartment rental due to an increase in apartment sales prices, and the sale price fell again over time. The spatio-temporal spillover effect of apartments was positive, but the positive effect of row house and detached house were concentrated in the original downtown area.