A computer-vision based pipe-inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and the radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation is introduced for line detection. The dimension of inner and outer radius of pipe is calculated by the proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle, by which pipes with wrong end-shape can be classified and removed.
In this paper, a computer-vision based pipe shape inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation for line detection. The dimension of inner and outer radius of pipe is calculated by proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle. by which pipes with wrong end-shape can be classified removed.
In this paper, a computer-vision based pipe-inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation for line detection. The dimension of inner and outer radius of pipe is calculated by proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle, by which pipes with wrong end-shape can be classified removed.
본 논문은 스마트폰 영상의 실시간 눈동자 검출에서 허프 원 변환 연산의 연산량 축소를 통한 속도 및 검출율 개선 방법을 제안한다. 눈동자를 검출하기 위해서는 입력 영상에서 얼굴과 눈을 검출하고, 눈 영역의 크기에 따라 눈동자의 크기가 변하는 것을 방지하기 위해 일정크기로 눈 영역을 정규화하며, 다양한 조명환경에서 눈동자가 검출이 가능하도록 히스토그램 평활화를 실시하고, 눈의 양쪽 끝점간의 거리를 구하여 영상에서의 실제 눈동자의 크기를 포함할 수 있는 최소한의 눈동자 크기 범위를 계산하여 허프 원 변환에 적용함으로써 연산량을 최소화 하였다. 제안한 방법을 밝은 조명과 어두운 조명에서 실험한 결과 기존 방법들과 비교하여 눈동자 검출 속도는 40% 이상, 검출율은 14% 이상 향상된 것을 보였다.
본 연구는 입력 영상에서 교통 신호등을 검출하고, 신호등의 색상을 인식하며, 신호를 판별하여 무인 자율주행 차량이나 ITS(Intelligent Transportation System)에 적용할 수 있는 신호등 색상 인식 알고리즘을 제안하였다. 제안된 알고리즘은 교통신호등을 검출하기 위해 CEA(Canny Edge Algorithm)를 이용하여 외곽선을 추출하였고, 신호등의 색상을 인식하고 정확도를 높이기 위하여 HCT(Hough Circle Transform)를 적용하였다. 제안된 방법으로 주행도로상에서 획득한 스트림 영상에 적용한 결과, 우수한 신호등 색상 인식률을 확인할 수 있었다. 특히 입력영상에서 신호등이 존재할만한 ROI(Region Of Interest)로 구분하여 연산시간을 줄일 수 있었고, 신호등과 유사한 영역이라도 원이 검출되지 않거나 HSV 공간에서 V값이 낮아 후보영역에서 탈락시킴으로써 인식률의 정확도를 높일 수 있었다.
Recently, there has been an increasing demand for computer-vision based inspection and/or measurement system as a part of factory automation equipment. Existing manual inspection method can inspect only specific samples and has low measuring accuracy as well as it increases working time. Thus, in order to improve the objectivity and reproducibility, computer-aided analysis method is needed. In this paper, front and side profile inspection and/or data transfer system are developed using computer-vision during the inspection process on three kinds of pipes coming from a forming line. Straight line and circle are extracted from profiles obtained from vision using Laplace operator. To reduce inspection time, Hough Transform is used with clustering method for straight line detection and the center points and diameters of inner and outer circle are found to determine eccentricity and whether good or bad. Also, an inspection system has been built that each pipe's data and images of good/bad test are stored as files and transferred to the server so that the center can manage them.
In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.
단일 영상에서 배경선은 공간 구조를 이해하거나 심미적 평가를(Aesthetic scoring) 내리는데 중요한 판단 기준이 된다. 본 논문에서 소개하는 배경선 추출은 소실점을 분석하거나 3차원 공간의 재구성, 영상의 기울어짐을 판단하는데 도움을 준다. 또한 삼등분 법칙(Rule of thirds)을 계산하는데도 용이하게 해준다. 본 논문은 크게 구간 허프 변환 매핑과 배경선 우선순위 결정, 배경선 선택으로 구성되어 있으며 각 기술은 차선 추출이나 건물 구조 분석, 소실점 추출, 문서의 직선 추출과 같은 다양한 분야에 응용될 수 있게끔, 기술이 세분화되어 있다. 이는 사용자가 객체의 특성과 조명 환경등을 고려하여 선택적으로 기술을 구성할 수 있게끔 해 준다. 본 논문에서 소개하는 방법은 허프 변환을 사용하는 만큼, 원 추출과 같은 허프 변환의 응용에도 적용될 수 있다. 구간 허프 변환은 추출하고자 하는 배경선의 개수를 설정할 수 있다. 또한 영상 내에서 중요한 배경선의 개수를 분석하여 중요한 배경선만을 추출할 수 있다. 본 논문은 실험결과를 통해 배경선 추출 결과를 볼 수 있다.
Circle detection has long been studied as one of fundamental image processing applications. It is used in divers areas including industrial inspection, medial image analysis, radio astronomy data analysis, and other object recognition applications. The most widely used class of circle detection techniques is the circle Hough transform and its variants. Management of 3 dimensional parameter histogram used in these methods brings about spatial and temporal overheads, and a lot of studies have dealt the problem. This paper proposes a robust circle detection method using maximal symmetry property of circle. The basic idea is that if perpendicular bisectors of pairs of edges are accumulated in image space, center of circle is determined to be the location of highest accumulation. However, directly implementing the idea in image space requires a lot of calculations. The method of this paper reduces the number of calculations by mapping the perpendicular bisectors into parameter space, selecting small number of parameters, and mapping them inversely into image space. Test on 22 images shows the calculations of the proposed method is 0.056% calculations of the basic idea. The test images include simple circles, multiple circles with various sizes, concentric circles, and partially occluded circles. The proposed method detected circles in various situations successfully.
International Journal of Precision Engineering and Manufacturing
/
제7권1호
/
pp.30-34
/
2006
Recently, there has been an increasing demand for computer-vision-based inspection and/or measurement system as a part of factory automation equipment. In general, it is almost impossible to check the fault of all parts, coming from part-feeding system, with only manual inspection because of time limitation. Therefore, most of manual inspection is applied to specific samples, not all coming parts, and manual inspection neither guarantee consistent measuring accuracy nor decrease working time. Thus, in order to improve the measuring speed and accuracy of the inspection, a computer-aided measuring and analysis method is highly needed. In this paper, a computer-vision-based pipe inspection system is proposed, where the front and side-view profiles of three different kinds of pipes, coming from a forming line, are acquired by computer vision. And the edge detection is processed by using Laplace operator. To reduce the vision processing time, modified Hough transform is used with clustering method for straight line detection. And the center points and diameters of inner and outer circle are found to determine eccentricity of the parts. Also, an inspection system has been built so that the data and images of faulted parts are stored as files and transferred to the server.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.