• 제목/요약/키워드: Hot-dip Galvanizing

검색결과 63건 처리시간 0.026초

인장강도 1200 MPa 급 자동차 서브 프레임의 합금성분 최적화 및 열변형 거동 연구 (A Study on Dimensional Change after Heat Treatment and Optimal Chemical Composition of Steels with 1200 MPa Tensile Strength for Automotive Subframe)

  • 정우창
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.107-116
    • /
    • 2020
  • Four air hardening steels with carbon, silicon, manganese, chromium, and molybdenum variations have been used in this study to find out the optimal chemical compositions of steels with over 1200 MPa tensile strength for automotive subframe. The dimensional changes after heat treatment were determined for two automotive parts with open and closed cross sections using 3D scanner. When four steels were austenitized at 900℃ for 30 seconds, cooled at 3℃/s, reheated to 450℃ for 10 seconds followed by air cooling to simulate hot-dip galvanizing treatment showed ultra high tensile strength over 1200 MPa. Rear floor cross member with open cross section revealed much bigger dimensional changes than subframe with closed cross section after heat treatment at 900℃ for 20 minutes followed by air cooling.

용융아연 도금욕 내 드로스 생성에 관한 실험적 고찰 (Formation Behavior of Intermetallic Dross Particles in Hot Dip Galvanizing Bath)

  • 박주현;백두진;이석규
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.216-216
    • /
    • 2015
  • 용융아연 도금 공정에서 강판이 도금욕에 침적되는 동안 강판으로부터 용출되는 Fe는 도금욕 내 Al, Zn와 반응하여 다양한 형태의 드로스를 형성시키는 원인이 된다. 이들 드로스는 강판 표면에 다양한 형태의 결함을 야기하므로, 실제 도금 공정에서 도금욕 내 발생하는 드로스의 생성거동에 관한 이해는 필수적이다. 따라서 본 연구에서는 도금욕 내 $Fe_xAl_yZn_z$계 드로스 생성에 미치는 도금욕 내 Al 및 Fe 함량의 영향에 대해 고찰하였으며, in-situ sampling 기법 및 finger rotating method를 이용하였다.

  • PDF

도금 두께 제어시스템의 개발 적용 (Application of Coating Thickness Control System)

  • 최일섭;유승렬;박한구;곽영우;김상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.892-894
    • /
    • 1995
  • This paper deals with developmeant and application of coating thickness control system in hot dip galvanizing process. According to the line conditions, such as line speed, strip size and target coating weight, a predictive preset model sets the initial oprating conditions. Referring the zine coating informations from the gauge, mean coating value controller adjusts the chamber pressure and horizontal distance between strip and air knife, while coating deviation controller adjusts the lip gap profile of the air knife. All adaptive gains are interactively calculated by numeric models based on the theoretical analysis. The operating result with this system effectively reduces the coating deviation in transverse direction as well as in longitudinal direction.

  • PDF

실리콘을 함유한 미니밀 소재의 용융아연도금성에 미치는 니켈첨가의 영향 (Effect of Nickel Addition in Hot Dip Galvanizing of Mini-mill Steels Containing Silicon)

  • 이호종;김종상;정진환
    • 한국표면공학회지
    • /
    • 제32권2호
    • /
    • pp.157-164
    • /
    • 1999
  • In this study the effect of nickel addition on the coating weight of mini-mill steels containing silicon has been studied. It is shown that the pure zinc accelerated growth of the alloy layers occurred by a rapid growth of the zeta phase at 0.06%Si. The addition of 0.06%Ni to a pure zinc bath was found to be very effective in reducing the coating weight and promoting preferential development of the delta phase. The coating obtained by immersion in the Zn-Ni bath shows the presence of a nickel-rich region between the zeta phase and the eta phase. It is suggested that nickel prevents the rapid growth of the zeta phase due to the formation of the Zn-Ni-Fe ternary compound, which may act as a barrier to inward diffusion of zinc or iron at the zeta-eta boundary.

  • PDF

아연의 제련 및 리사이클링 현황 (Current Status of Zinc Smelting and Recycling)

  • 손호상
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.30-41
    • /
    • 2019
  • 아연의 전세계 생산량은 약 1,300만 톤 정도이며, 철, 알루미늄, 구리에 이어서 네 번째로 많이 사용되는 금속이다. 아연을 리사이클링하여 2차지금을 생산하는 경우 광석으로부터 1차지금을 생산하는데 필요한 에너지의 약 75 %를 절약할 수 있으며, $CO_2$ 발생량은 약 40 %를 절감할 수 있다. 그러나 아연의 주 용도가 철강재의 도금용이기 때문에 아연의 리사이클링율은 약 25 % 수준으로 다른 금속보다 낮은 수준이다. 아연의 리사이클링 원료에는 제강분진, 황동 제조시에 발생하는 분진, 비철금속의 제조공정에서 발생하는 슬러지, 아연 잉곳의 재용해나 용융아연도금을 할때 생성되는 드로스, 폐건전지, 그리고 금속성 스크랩 등이 있다. 제강분진과 폐건전지가 가장 활발하게 리사이클링 되고 있다. 이러한 리사이클링 공정의 대부분은 건식제련법을 응용하고 있으나, 최근에는 건식과 습식의 복합처리에 관해서도 많은 관심이 주어져 있다.

연속용융 도금라인 용 고내침식 Fe계 합금 개발 (Development of High Erosion Resistant Fe-based Alloy for Continuous Hot Dipping Line)

  • 백민숙;김용철;백경철;곽준섭;윤동주
    • 한국표면공학회지
    • /
    • 제53권3호
    • /
    • pp.95-103
    • /
    • 2020
  • In this study, the material used in the hot dip galvanizing equipment was poorly corrosion-resistant, so it was performed to solve the cost and time problems caused by equipment replacement. The theoretical calculation was performed using the DV-Xα method(Discrete Variational Local-density approximation method). The alloy (STS4XX series) of the equipment currently used has a martensite phase. Therefore, the theoretical calculation was performed by applying P4 / mmm, which is a tetragonal structure. The new alloy was chosen by designing theoretical values close to existing materials. Considering elements that contribute to corrosion, most have high prices. Therefore, the design was completed by adjusting the content using only the components of the reference material in the theoretical design. The final design alloys were chosen as D6 and D9. Designed D6 and D9 were dissolved and prepared using an induction furnace. After the heat treatment process was completed, the corrosion rate of the alloys was confirmed by using the potentiodynamic polarization test. The surface of the prepared alloys were processed horizontally and then polished to # 1200 using sand paper to perform potentiodynamic polarization test. Domestic products: 4.735 mpy (mils / year), D6: 0.9166 mpy, D9: 0.3372 mpy, alloys designed than domestic products had a lower corrosion rate. Therefore, the designed alloy was expected to have better erosion resistance.

갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향 (Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings)

  • 이정민;김동환;이선봉;김동진;김병민
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

신기능성 표면처리강판 제조기술의 최근 진보 (Recent Progress in New Functional Coating Technology)

  • 김태엽
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.37-37
    • /
    • 2012
  • The coated steels, mainly with zinc by either hot-dip galvanizing or electroplating, are widely used for panels of automotive, electrical appliances and construction, whose size of world market have reached 130 million tons in 2008. Current issues for the coated steels can be integrated in terms of high functionality, low cost, environment-friend and available resource. The best solution can be provided if thin layer coating with higher quality is produced by an eco-friendly process, and PVD, physical vapor deposition, can be an alternative practice to existing coating processes. PVD technologies have been very common ones in electronic and semiconductor industries, but recognized as non-profitable processes for the coated steels due to low process speed and lack of continuous operation skills. Systematic researches from 1990s in Europe, even though discouraged by a shutdown of the first Japanese PVD coating plant in 1999, have realized several continuous PVD coating plants, and also enhanced launching of developments in steel industries. To be successful with PVD coating technologies over existing ones, productivity to meet economics should be created from a highly sophisticated process. Some PVD technologies fit for the high-speed process will be introduced together with experiences from industrial applications.

  • PDF

Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성 (Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn)

  • 전선호;진광근;김대룡
    • 대한금속재료학회지
    • /
    • 제46권2호
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

소성인장변형 몇 아연도금된 Fe-Mn-C계 TWIP 강의 전기화학적 수소투과거동 (Electrochemical Hydrogen Permeation Behaviors of Pre-Strained Fe-Mn-C TWIP Steel With or Without Zn Coating)

  • 김성진
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.297-303
    • /
    • 2023
  • This study aimed to evaluate hydrogen permeation behaviors of pre-strained twinning-induced plasticity steel with or without Zn coating using electrochemical permeation technique. In contrast to un-strained and 30% strained samples, permeation current density was measured in the 60% strained sample. Tensile pre-straining at 60% involved microstructural modifications, including a high level of dislocation density and stacking fault with a semi-coherent twin boundary, which might provide a high diffusion path for hydrogen atoms. However, reproducibility of measurements of hydrogen permeation current was low due to non-uniform deformation and localized stress concentration. On the other hand, the permeation current was not measured in pre-strained TWIP steel with Zn coating. Instead, numerous blisters with some cracks were observed on the surface of the coating layer. In locally damaged Zn coating under tensile straining, hydrogen atoms could relatively easily permeate through the coating layer. However, they were trapped at the interface between the coating layer and the substrate, which might delay hydrogen penetration into the steel substrate.