• Title/Summary/Keyword: Hot-Standby

Search Result 40, Processing Time 0.022 seconds

DEVELOPMENT OF DIGITAL DC-ARC WELDING MACHINE (디지털 DC-ARC 용접기의 개발)

  • Park Ba-Da;Dung Ngo Manh;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.71-72
    • /
    • 2006
  • This paper introduces the results of the development of a new mobile Digital DC-arc Welding Machine (DDWM). A simple PI controller is applied to the DDWM to control the output welding current tracking the constant setting current. Furthermore, a hot-start function, an anti-stuck function, a standby mode and an intelligential circuit breaker (ICB) are included in the DDWM. The DDWM increases welding quality and saves more power energy than a conventional welding machine. Because the DDWM is changed from ready mode into the standby mode automatically after 2 minutes interval from this unload start. Then the DDWM is changed into ready mode automatically since it is reused to weld. Mover, the DDWM increases welding qualify, productivity and reduces costs of welding. So, the DDWM can have a great of contribution to the mobile welding industries. The effectiveness of the DDWM was proven by the experimental results and durable test.

  • PDF

A Study on Enhanced Self-Checking Characteristics in Redundant Communication System (여분을 갖는 통신시스템에서의 자기검사특성 향상에 관한 연구)

  • 신덕호;김현기;이재훈;이창훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.352-359
    • /
    • 2000
  • In this paper, the method is used that each system isolates the part in which faults are occurred in case of fault occurrence since total system is designed in the type of hot standby sparing system construction and self-checking circuit in each system is attached to the memory being of the high failure rate in common communication system. Thus reliability and availability in system are improved. In this thesis, self-checking circuit was designed using 2 out of 6 code and didn't have any effect to the system operation. For the purpose of verification, each system attached with self-checking circuit was simulated through fault injection arid the continuity of each system in hot standby sparing system was tested in case that the system was switched when faults in the system were occurred.

  • PDF

Redundant Architectural Design of Hydraulic Control System for Reliability Improvement of Underwater Construction Robot (수중건설로봇의 유압 제어 안정성 향상을 위한 이중화 설계)

  • Lee, Jung-Woo;Park, Jeong-Woo;Suh, Jin-Ho;Choi, Young-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.380-385
    • /
    • 2015
  • In the development of an underwater construction robot, the reliability of the operating system is the most important issue because of its huge maintenance cost, especially in a deep sea application. In this paper, we propose a new redundant architectural design for the hydraulic control system of an underwater construction robot. The proposed architecture consists of dual independent modular redundancy management systems linked with a commercial profibus network. A cold standby redundancy management system consisting of a preprocessing switch circuit is applied to the signal network, and a hot standby redundancy management system is adapted to utilize two main controllers.

Design & Implementation of Flight Software Satellite Simulator based on Parallel Processing (병렬처리 기반의 위성 탑재소프트웨어 시뮬레이터 설계 및 개발)

  • Choi, Jong-Wook;Nam, Byeong-Gyu
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • The software-based satellite simulator has been developed from the start of the project to resolve the restriction and limitation of using hardware-based software development platform. It enables the development of flight software to be performed continuously since initial phase. The satellite simulator emulates the on-board computer, I/O modules, electronics and payloads, and it can be easily adapted and changed on hardware configuration change. It supports the debugging and test facilities for software engineers to develop flight software. Also the flight software can be loaded without any modification and can be executed as faster than real-time. This paper presents the architecture and design of software-based GEO satellite simulator which has hot-standby redundancy mechanism, and flight software development and test under this environment.

The Inplementation of Fault-Tolerant Dual System Using the Hot-Standby Sparing Technique (핫 스탠바이 스페어링 기법을 이용한 고장 감내 이중화 시스템 설계)

  • Shin Jin wook;Park Dong sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1113-1122
    • /
    • 2004
  • This paper is basically to achieve the high-availability and high-reliability of the control system from the implementation of the fault-tolerant system using the hot-standby sparing technique. To meet the objective, we design and implement a board with fault tolerance I/O bus to detect the fault. Warm-standby sparing technique is the fault tolerance technique usually used for switching control system in present. This technique can be easily implemented, but can not detect the fault quickly and can malfunction because of the hardware fault. The hot-standby sparing fault tolerant technique implemented in this paper is consists of dual processor modules and a I/O processor using fault tolerant I/O bus. The proposed method can find the faults as soon as possible, so it can prevent from wrong operation. Also it is possible to normal re-service due to the short recovering time. To implement the fault-tolerant dual system with fault detection be, two daughter, called FTMA and FTIA, boards designed and implemented are applied to the system. And we also simulated the proposed method to verify the high-availability and high-reliability of the control system using Markov process.

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

Drain-current Modeling of Sub-70-nm PMOSFETs Dependent on Hot-carrier Stress Bias Conditions

  • Lim, In Eui;Jhon, Heesauk;Yoon, Gyuhan;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2017
  • Stress drain bias dependent current model is proposed for sub-70-nm p-channel metal-oxide semiconductor field-effect transistors (pMOSFETs) under drain-avalanche-hot-carrier (DAHC-) mechanism. The proposed model describes the both on-current and off-current degradation by using two device parameters: channel length variation (${\Delta}L_{ch}$) and threshold voltage shift (${\Delta}V_{th}$). Also, it is a simple and effective model of predicting reliable circuit operation and standby power consumption.

Analysis and Degradation of leakage Current in submicron Device (미세소자에서 누설전류의 분석과 열화)

  • 배지철;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.113-116
    • /
    • 1996
  • The drain current of the MOSFET in the off state(i.e., Id when Vgs=0V) is undesired but nevertheless important leakage current device parameter in many digital CMOS IC applications (including DRAMs, SRAMs, dynamic logic circuits, and portable systems). The standby power consumed by devices in the off state have added to the total power consumed by the IC, increasing heat dissipation problems in the chip. In this paper, hot-carrier-induced degra- dation and gate-induced-drain-leakage curr- ent under worse case in P-MOSFET\`s have been studied. First of all, the degradation of gate-induced- drain-leakage current due to electron/hole trapping and surface electric field in off state MOSFET\`s which has appeared as an additional constraint in scaling down p-MOSFET\`s. The GIDL current in p-MOSFET\`s was decreased by hot-electron stressing, because the trapped charge were decreased surface-electric-field. But the GIDL current in n-MOS77T\`s under worse case was increased.

  • PDF

Actual Energy Consumption Analysis on Temperature Control Strategies (Set-point Control, Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control) of Secondary Side Hot Water of District Heating System (지역난방 2차측 공급수 온도 제어방안(설정온도 제어, 외기온 보상제어, 외기온 예측제어)에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki;Lee, Sang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.137-145
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side of District Heating System (DHS) with different hot water supply temperature control methods are compared. Three methods are Set-point Control, Outdoor Temperature Reset Control and Outdoor Temperature Prediction Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side of the system, the results show that Outdoor Temperature Prediction Control method saves more energy. In general, Outdoor Temperature Prediction Control method lowers the supply temperature of hot water, and it reduces standby losses and increases overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, Outdoor Temperature Prediction Control method saves about 7.1% in comparison to Outdoor Temperature Reset Control method and about 15.7% in comparison to Set-point Control method. Also, it is found that at when partial load condition, such as daytime, the fluctuation of hot water supply temperature with Set-point Control is more severe than Outdoor Temperature Prediction Control. Therefore, it proves that Outdoor Temperature Prediction Control is more stable even at the partial load conditions.