• 제목/요약/키워드: Hot-Pressing Method

검색결과 127건 처리시간 0.024초

알루미나 분말 성형체의 고온 치밀화 성형 공정을 위한 유한요소 해석 (Finite Element Analysis for High Temperature Densification Processing of Alumina Powder Compacts)

  • 권영삼;김기태
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.347-358
    • /
    • 1994
  • Creep densification and grain growth of alumina powder compacts during high temperature processing were investigated. The creep densification and grain growth of alumina powder compacts during various sintering processes were analyzed by employing the consitutive model by Kwon and Kim. Theoretical results from the constitutive model were compared with various experimental data of alumina powder compacts in the literature including pressureless sintering, sinter forging and hot pressing. The proposed constitutive equations were implemented into finite element analysis program (ABAQUS) to simulate densification for more complicated geometry and loading conditions. The effects of friction between die and powder compact or punch and powder compact during sinter forging and hot pressing are investigated by using the finite element method. Also, high temperature forming processing of alumina compact with complicated shape was simulated.

  • PDF

LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics)

  • 박이현;정헌채;김동현;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

니켈 실리사이드 화합물의 소결특성 (Sintering Characteristics of Nickel Silicide Alloy)

  • 변창섭;이상호
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.341-345
    • /
    • 2006
  • [ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.

국산 명반석과 황산염으로부터 고순도의 미세한 알루미나의 제조 및 특성에 관한 연구 (Fabrication and Characterization of High Purity of Fine Alumina from Korean Alunite and Sulfate Salts)

  • 변수일;이수영;김종희
    • 한국세라믹학회지
    • /
    • 제16권1호
    • /
    • pp.13-20
    • /
    • 1979
  • High purity alumina has been extracted form low grade Korean alunite. Alunite ore was treated by 15% $NH_4OH$ solution, followed by 10% $H_2SO_4$ leaching and metallic impurities such as Fe and Ti were removed by solvent extraction method. Alumina prepared by the extraction process was 99.9% in purity. Hot Petroleum Drying Method has been employed for the preparation of uniformly fine alumina powder, using chemical reagent aluminum sulfate and ammonium aluminum sulfate extrated from Korea alunite. The sinterability of alumina powder prepared by Hot Petroleum Drying Method was shown to be improved in comparison with the one treated by other methods such as ball milling method, but dry pressing was difficult due to the agglomeration of calcined powder. The best slip of alumina powder prepared by Hot Petroleum Drying Method contained a lower soild content than the one treated by other methods. The alumina body formed by soild and drain casting with the former alumina powder showed a higher sintered density.

  • PDF

알루미늄탄소나노튜브 복합재의 가공 방법과 탄소나노튜브 함량에 따른 트라이볼로지 특성 (Tribological Characteristics of Carbon Nanotube Aluminum Composites According to Fabrication Method and Content of Carbon Nanotube)

  • 이영제;이중희;김일영;이규선;백승현;윤정일;김영직
    • Tribology and Lubricants
    • /
    • 제24권5호
    • /
    • pp.269-274
    • /
    • 2008
  • Carbon nanotube composite is considered to be a good candidate material for composite material because of its excellent mechanical property and low density under high temperature as well as good wear and frictional properties. In this study, tribological characteristics of carbon nanotube aluminum composite were evaluated using pin-on-disk wear tester. Spark Plasma Sintering method is more effective than Hot Pressing method in terms of wear and friction. The composite with 1% CNT has the lowest friction and wear characteristic.

n형 $Bi_2(Te,Se)_3$ 가압소결체의 열전특성 (Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing)

  • 박동현;노명래;김민영;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.49-54
    • /
    • 2010
  • n형 $Bi_2(Te,Se)_3$ 분말을 용해/분쇄법으로 제조하여 가압소결 후, 가압소결체의 열전특성을 $Bi_2(Te,Se)_3$ 잉곳과 비교하였으며, $Bi_2(Te,Se)_3$ 열전분말의 기계적 밀링처리가 가압소결체의 열전특성에 미치는 영향을 분석하였다. $Bi_2(Te,Se)_3$ 잉곳은 $24.2{\times}10^{-4}W/m-K^2$의 power factor를 나타내었으며, 이를 가압소결함으로써 power factor가 $27.3{\sim}32.3{\times}10^{-4}W/m-K^2$로 향상되었다. 기계적 밀링처리한 분말로 제조한 $Bi_2(Te,Se)_3$ 가압소결체는 $100^{\circ}C$에서 1.02의 무차원 성능지수를 나타내었으며, $130^{\circ}C$에서 외인성-내인성 천이거동을 나타내었다.

고분자 전해질 연료전지 성능에 미치는 MEA 가압제조 공정 조건의 영향 (Performance of Fuel Cell with PEMFC Fabricated under Different Pressure)

  • 이기성;심수만;김동민
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.70-75
    • /
    • 2013
  • It has fabricated membrane electrode assemblies (MEA) for proton exchange membrane fuel cell by hot-pressing method. The hot-pressing was used for the fabrication of MEA which is composed of commercial platinum electrode on carbon paper. The performance of MEA was studied with different fabrication conditions of temperature, pressure and torque. As the temperature increased, the performance of MEA was increased. and started to decrease l after arrived at the maximum performance of MEA. This is related with good contact between electrode and polymer electrolyte membrane at high temperature and microstructural change at much higher temperature. Similarly, as the pressure increased, the performance of the MEA increased up to highest values and start to decrease. According to the our results, the maximal performance of the MEA was at the temperature of $140^{\circ}C$ and the pressure of $1.5{\times}10^3$ kPa. The optimal torque to assemble the single stack was 3.2 N m.

Electrical Current Applied Hot Pressing Processing of $Bi_2Te_3$- $Bi_2Se_3$ Thermoelectrics

  • Park, S.C.;D.G.Baik;Hwang, C.W.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.516-518
    • /
    • 1996
  • Bimuth telluride type thermoelectrics are prepared by AC current applied got pressing method. It is possible to minimize the defects arising from the vaporization of Te, because of the very short processing time. The optimum conditions for the got pressing of 95mol% $Bi_2Te_3$-5mol%$Bi_2Se_3$ themoelectrics are sintered at $400^{\circ}C$, for 2min. with 1500 kgf/$cm^2$ from the particle size of 125 to 250 $\mu$m rang of powder. the resulted Z value (figure of merit) was 2.2$\times$10-3deg-1.

  • PDF

AC 통전식 Hot Press 법에 의해 제조된 (Pb$_{1-x}$Sn/$_{x}$)Te 열전반도체의 물성 (Thermoelectric Properties of the (Pb$_{1-x}$Sn/$_{x}$)Te Sintered by AC Applied Hot Pressing)

  • 신병철;황창원;오수기;최승철;백동규
    • 마이크로전자및패키징학회지
    • /
    • 제7권4호
    • /
    • pp.1-5
    • /
    • 2000
  • 열전반도체 ($Pb_{1-x}Sn_{x}$)Te를 AC통전 가압법으로 제조하여 그물성에 대해서 연구하였다. 균질성 향상과 구성 성분의 휘발방지에 유효한 진동분쇄공정으로 기계적 합금화를 시켰다. Sn 함량이 증가함에 따라 합금화에 요구되는 기계적 합금화 시간이 증가되었다. AC 통전 hot press법으로 873-923 K에서 1~4분간 150 kgf/$\textrm{cm}^2$의 압력으로 소결하였다. 단시간의 소결은 Te의 증발을 억제할 수 있었다. ($Pb_{1-x}-Sn_{x}$)Te 밀도는 소결 시간보다 소결온도에 더 영향을 받았다. Sn첨가량이 10 mol% 이하일때 온도 상승에 따라 p-n전이 현상이 일어났으나 그 이상의 함량에서는 p-type반도성이 그대로 유지됨이 관찰되었다. 열기전력은 500 K, x=0.2일때 250 $\mu$V/K의 최대치론 나타내었다. Sn함량의 증가에 따라 최대치는 낮아졌으며, 그 온도는 고온측으로 이동하였으며, 전기전도도의 최대치는 온도가 상승함에 따라 저하되었다.

  • PDF

전도성(電導性) $SiC-ZrB_2$ 복합체(複合體)의 특성(特性) (Properties of Electro-Conductive $SiC-ZrB_2$ Composites)

  • 신용덕;박용갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1512-1515
    • /
    • 1996
  • Dense $SiC-ZrB_2$ electro-conductive ceramic composites were obtained by hot pressing for high temperature structural application. The influences of the $ZrB_2$ additions an the mechanical and electrical properties of $SiC-ZrB_2$ composites were investigated. Samples were prepared by adding 15, 30, 45 vol.% $ZrB_2$ particles as a second phase to a SiC matrix. Sintering of monolithic SiC and $SiC-ZrB_2$ composites were achieved by hot pressing under a $10^{-4}$ torr vacuum atmosphere from 1000 to $2000^{\circ}C$ with a pressure of 30 MPa and held for 60 minutes at $2000^{\circ}C$. SiC and $SiC-ZrB_2$ samples obtained by hot pressing were fully dense with the relative densities over 99%. Flexural strength and fracture toughness of the samples were improved with the $ZrB_2$ contents. In the case of SiC sample containing 30vol.% $ZrB_2$, the flexural strength and fracture toughness showed 45% and 60% increase, respectively compared to those of monolithic SiC sample. The electrical resistivities of $SiC-ZrB_2$ composites were measured utilizing the four-point probe method and they decreased significantly with Increasing $ZrB_2$ contents. The resistivity of SiC-30vol.% $ZrB_2$ showed $6.50{\times}10^{-4}{\Omega}{\cdot}cm$.

  • PDF