• Title/Summary/Keyword: Hot-Forming

Search Result 451, Processing Time 0.032 seconds

Analysis of A356 alloys filling behavior considering Two-Phase flow (Two-Phase Flow를 이용한 A356 합금의 충전거동 해석)

  • Seol, D.E.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • A semi-solid forming technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forging. In this study, the numerical analysis of semi-solid filling has been studied with solid fraction fs = 30% of A356 aluminum alloys. The finite difference program of two-phase flow model of Navier Stokes' equation coupled with heat transfer and solidification has been developed to predict a filling pattern, liquid segregation and temperature distribution of semi-solid metals. It gives die filling patterns and final solidification area. It can predict mechanical properties of semi-solid forming processes.

  • PDF

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

A Study on Process Improvement of Combined Extrusion with Aluminum Alloy 7075 (유한요소 시뮬레이션을 이용한 알루미늄 7075 복합 압출재에 대한 공정개선 연구)

  • 김진복;이지억;강범수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.197-205
    • /
    • 1996
  • A combined extrusion process studied here consists of forward and backward extrusion, and it is formed in single operation. The metal flow involved in the operation has appeared to be difficult to analyze accurately because of mixed directions of the flow. In this study, conventional two operations of a forward and a backward extrusions is transformed into one operation of mixed extrusion. A process designed by an industry expert is simulated by the rigid-plastic finite element method to investigate the metal flow and defects. In addition to the FEM simulation, experimental analysis has been carried out to confirm the design in industry, which includes material characterization, preliminary expriment, and whole experimental forming operation. The experimental results show that warm forming of extrusion is more desirable than cold working and hot forming in view of grain growth. Also two conditions of lubrication between workpiece and die has been investigated.

  • PDF

An Experimental Study of the Effect of Process Conditions on Direct Surface Forming of a Light-Guide (성형조건에 따른 부분 압축가열방식의 도광판 성형에 관한 실험적 연구)

  • 조광환;윤경환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • A light-guide is one of several important components of backlight unit in TFT-LCD. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. DSF is very similar to the well-known hot embossing except for partial contact between mold and substrate. The final V-groove pattern shows different shapes depend on the temperature of mold surface, contact time of mold and depth of V-groove.

A Development of Manufacturing Process of Wooden Footpath Block to Reuse of Wood Waste (목질폐잔재를 재활용한 목질보도블록 제조기술 개발)

  • Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.96-104
    • /
    • 1997
  • The objective of this research project was to develop the wooden footpath block to reuse of wood waste. Some physical and mechanical properties of the wooden block such as water absorption, thickness swelling, modulus of rupture, internal bond, density profile and impact resistance were studied. Water absorption and thickness swelling of the wooden block were greatly reduced when the wooden block was pressed inside the forming device than by conventional hot pressing. Also, Modulus of rupture and internal bond of the wooden block were increased greatly when the pressing was completed inside the forming device. The density profile of the wooden block was improved up to 93.5%, minimum to average density ratio. The wooden block manufactured in this study have excellent physical and mechanical prperties in comparison with existing wood based materials. So, these wooden blocks are applicable to footpth block or other exterior members.

  • PDF

Evaluation of High Temperature Workability of A350 LF2 Using the Deformation Processing Map (변형 공정지도를 활용한 A350 LF2 소재의 고온 성형성 평가)

  • Jung E.J.;Kim J.H.;Lee D.G.;Park N.K.;Lee C.S.;Yeom J.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.333-339
    • /
    • 2006
  • Hot deformation behavior of a carbon steel (A350 LF2) was characterized by compression tests in the temperature range of $800-1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$, The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing a deformation processing map. Processing maps were generated using the combination of dynamic material model (DMM) and flow instability theories based on the flow stability criteria and Ziegler's instability criterion. In order to evaluate the reliability of the map, the mirostructural characteristics of the hot compressed specimens were correlated with test conditions in the stable and unstable regime. The combined microstructural and processing map of A350 LF2 was applied to predict an optimum condition and unstable regions for hot forming.

Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process (반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정)

  • Kang, Chung-Gil;Kang, Sung-Soo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy (예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향)

  • Kwon, Y.M.;Lee, Y.S.;Song, J.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF