• 제목/요약/키워드: Hot water heat load

검색결과 89건 처리시간 0.029초

공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석 (Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment)

  • 주홍진;이경호;곽희열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성 (Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링 (LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System)

  • 박영칠
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

공동주택용 태양열원 급탕시스템의 운전성능 연구 (A Study on the Operating Performance of Solar Assisted Hot Water System for Apartment Houses)

  • 이윤규;황인주
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.928-936
    • /
    • 2003
  • In the present study, feasibility investigation on the solar assisted hot water supply system for apartment houses was carried out by the review of service facility and heat load pattern. Also analysis and experiment of the small sized system model were performed. This hybrid system are consists of solar collector, heat storage tank, controller, and gas boiler using LPG as a secondary heat source. The analytical results showed a good agreement with experimental data. We found that this hybrid system could reduce the energy cost by 30% for hot water compared to typical boiler system in the apartment houses. Also we showed that this model could be used for the energy and economic analysis of the hybrid system.

봄철 태양열 하이브리드 시스템의 성능특성 연구 (Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season)

  • 표종현;김원석;조홍현;박차식
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

지역난방 공동주택에서 급탕 2단 열교환기 용량의 적정성 평가에 관한 연구 (A Study on the Design Capacity of 2-stage Hot Water Heat Exchanger in Apartment Housings with District Heating System)

  • 사기용;정광섭;김영일;나채문;김성민;김상호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1037-1042
    • /
    • 2009
  • In connection with a recent research project dealing with heating system in apartment buildings by district heating, it was realised that in general very little information on the actual performance of heating and hot water systems in apartment buildings has been documented. In order to improve of district heating systems, a prediction of the heat demand first needs to be determined before a production plan. this is hot water heat system developed in this paper. this is also analyzed relation heat load with preheat load in hot water heating exchanger system.

  • PDF

제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석 (Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home)

  • 주홍진;이경호;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

스프레이 열전달을 이용한 저온도차 스털링 엔진의 고온수 공급 유량 및 온도에 따른 기계 부하성능 실험 (Mechanical Load Performance Measurements of a Low Temperature Differential Stirling Engine with Water-Sprayed Heat Transfer according to Supply Water Flow Rates and Temperatures)

  • 심규호;정민성;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.29-36
    • /
    • 2015
  • Recently, Stirling engines are emerging as a key device for power conversion of renewable energy or waste energy. This study develops a LTDSE(Low Temperature Differential Stirling Engine) using a water spray for higher heat transfer and performs load performance tests for various flow rates and temperatures of hot water spray for variable engine loads emulated by a mechanical friction device. Internal temperature and pressure, working frequency and inlet and outlet temperature of the supply water are measured. As a result, the increases in flow rate and temperature of hot water respectively enhance the power output, efficiency and the working frequency, while the increasing engine load leads to decreases in working frequency but increases in the pressure amplitude. Eventually, it is revealed there exists a maximum shaft power of the test engine.

공학적인 지열시스템(EGS)을 이용한 지열발전 기술 (Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS))

  • 한정상;한혁상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF