• Title/Summary/Keyword: Hot wastewater

Search Result 40, Processing Time 0.027 seconds

Performance Comparison of R134a Organic Rankine Cycle (ORC) Using Hot Wastewater and Surface Seawater (온배수와 표층수를 이용하는 R134a용 유기 랭킨사이클의 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.768-773
    • /
    • 2012
  • This study was performed to find out the possibility that hot waste water from a thermoelectric power plant can be applied to Organic Rankine Cycle (ORC) by comparing the performance characteristics for use of the ocean surface water ($25^{\circ}C$) and hot waste water ($35^{\circ}C$) as a secondary fluid. The parameters considered in this study are four; superheating temperature, subcooling temperature, turbine efficiency, and pump efficiency. Main results of this study are summarized as follows : Overall efficiency of applying hot waste water to ORC is 87% higher than that of surface water. Thus it could be confirmed that hot waste water of the thermoelectric power plant can be applied to ORC.

Application and Development of Activated Carbon Adsorption in Wastewater

  • Zhang, DianYa;Deng, ChengXun;Deng, Xu;Yu, ZhiMin
    • Journal of Urban Science
    • /
    • v.8 no.2
    • /
    • pp.19-23
    • /
    • 2019
  • With the continuous progress of modern science and technology and the rapid development of economy, with the continuous development of society, the treatment of industrial and domestic sewage has become a hot concern. Toxic substances and non-degradable pollutants in wastewater also have a great impact on the environment. This paper mainly expounds the current environmental situation and the adsorption mechanism of activated carbon. And the application and development of activated carbon adsorption in wastewater.

The treatment of coolant wastewater of rolling plate process by High Gradient Magnetic Separation

  • Kim, Tae-Hyung;Ha, Dong-Woo;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Park, Seong-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.8-11
    • /
    • 2009
  • This study introduced wastewater treatment method by High Gradient Magnetic Separation (HGMS). HGMS treatment was high efficient method for various industrial wastewaters. The system is currently research state, but we have surveyed commercialize the technology for industry. In rolling plate process, coolant wastewater was recycled by sedimentation and sand filter system. It needs several large reservoirs and long time to remove suspended solid (SS) like metal fines and iron oxide in hot rolling plate making process. If removing rate of suspended solid in rolling coolant wastewater is improved by using HGMS system, the productivity of working process can be increased and the area of reservoir can be reduced. We manufactured high temperature superconducting HGMS system that had a purpose to treatment of coolant wastewater in rolling plate process. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel 430 mesh, which is a core component in the magnetic separation system, In our basic preliminary experiment using HGMS system, it has been clear that the fine paramagnetic particles in the coolant wastewater obtained from rolling plate process of POSCO can be separated with high efficiency.

Thermal Effluent Effects of Domestic Sewage and Industrial Wastewater on the Water Quality of Three Small Streams (Eung, Chiljang and Buso) during the Winter Season, Korea (동계 저온기의 소하천 수질에 미치는 하·폐수의 온배수 영향)

  • Soon-Jin, Hwang;Jeon, Gyeonghye;Eum, Hyun Soo;Kim, Nan-Young;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.238-253
    • /
    • 2017
  • The sewage and wastewater (SAW) are a well-known major source of eutrophication and greentide in freshwaters and also a potential source of thermal pollution; however, there were few approaches to thermal effluent of SAW in Korea. This study was performed to understand the behavioral dynamics of the thermal effluents and their effects on the water quality of the connected streams during winter season, considering domestic sewage, industrial wastewater and hot spring wastewater from December 2015 to February 2016. Sampling stations were selected the upstream, the outlet of SAW, and the downstream in each connected stream, and the water temperature change was monitored toward the downstream from the discharging point of SAW. The temperature effect and its range of SAW on the stream were dependent not only on the effluent temperature and quantity but also on the local air temperature, water temperature and stream discharge. The SAW effects on the stream water temperature were observed with temperature increase by $2.1{\sim}5.8^{\circ}C$ in the range of 1.0 to 5.5 km downstream. Temperature effect was the greatest in the hot spring wastewater despite of small amount of effluent. The SAW was not only related to temperature but also to the increase of organic matter and nutrients in the connected stream. The industrial wastewater effluent was discharged with high concentration of nitrogen, while the hot spring wastewater was high in both phosphorus and nitrogen. The difference between these cases was due to with and without chemical T-P treatment in the industrial and the hot spring wastewater, respectively. The chlorophyll-a content of the attached algae was high at the outlet of SAW and the downstream reach, mostly in eutrophic level. These ecological results were presumably due to the high water temperature and phosphorus concentration in the stream brought by the thermal effluents of SAW. These results suggest that high temperature of the SAW needs to be emphasized when evaluating its effects on the stream water quality (water temperature, fertility) through a systematized spatial and temporal investigation.

The Separation of Particulate within PFC Decontamination Wastewater Generated by PFC Decontamination (PFC 제염 후 발생된 제염폐액 내 오염입자의 제거)

  • Kim Gye-Nam;Lee Sung-Yeol;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho;narayan M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.32-39
    • /
    • 2005
  • When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was $0.1{\sim}10{\mu}m$. Hot particulate of more than $2{\mu}m$ in PFC contamination wastewater was removed by first filter and then hot particulate of more than $0.2{\mu}m$ was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was $95{\sim}97\%$. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate $H_2$ gas in alpha radioactivity environment.

  • PDF

The Adaptability Verification about the Waterproofing Sheet of the Automatic Equipment. (방수시트의 자동화장비에 대한 적용성 검증)

  • Kim, dae-kyu;Yun, jong-gu;Sin, hong-cheol;Oh, hong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.4-5
    • /
    • 2018
  • The water proofing sheet of synthetic polymer applies to the purification plant, the wastewater treatment center, the low waterway, the dosing tanks, etc, and when we construct these, we apply the dual waterproof by means of hot air staking welder or extruder. However, the experts skilled in the hot air welding or extruder does not use them, it can be a quality problem. Therefore, in this study, it is the purpose to verify whether the semi-automatic hot air staking welder and automatic extruder that can construct the waterproof sheet is possible in field even if it is not a professional specialist.

  • PDF

Optimum Design of Animal Wastewater Treatment System (畜産廢水處理시스템의 最適說計要因 導出)

  • Oh, In-Hwan;Park, Joeng-Hyun;Kim, Beom-Seok;Lee, Sang-Rak;Maeng, Won-Jae
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 1995
  • An efficient Treatment of animal wastewater is one of the hot issues for preventing the environmental pollution. It should be established the design parameter in order to purify the animal wastewater. A test is carried on in the pilot plant as a simplified activated sludge process. A vibration sieve separator is deviced to keep the pollution load constant by means of separation of solid matter. The BOD removal efficiency of the vibration sieve showed over 50%. As the test results, the BOD contents of the influent was in average of 3,000 mg/I and that of the effluent 85 mg/I. So, the BOD removal rate showed 97% in average. The SS-contents in the primary chamber was about 3,300 mg/I and that of effluent 92 mg/I. The SS removal efficiency showed 97%. The removal rate of total nitrogen and phosphore were in average of 82% respectively. Carrying out in winter season, it showed relatively good results; The design parameter approved in this test can be applied to the full-time farmers.

  • PDF

Application Status and Prospect of Magnetic Separation Technology for Wastewater Treatment (폐수처리 분야에서 자기 분리기술의 응용 현황 및 전망)

  • Chu, Shaoxiong;Lim, Bongsu;Choi, Chansoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Magnetic separation technology is an efficient and environmentally friendly technology. Compared with the traditional wastewater treatment technology, the magnetic separation technology has its unique advantages and characteristics, and has been widely applied in the field of wastewater treatment. In particular, the emergence of superconducting magnetic separation technology makes possible for high application potential and value. In this paper, which through consulting with the literatures of Korea, Chinese, United States and other countries, the magnetic separation technology applied to wastewater treatment was mainly divided into direct application of magnetic field, flocculation, adsorption, catalysis and separation coupling technology. Advantages and limitations of the magnetic separation technology in sewage treatment and its future development were also studied. Currently, magnetic separation technology needs to be studied for additional improvement in processing mechanism, design optimization of magnetic carrier and magnetic separator, and overcoming engineering application lag. The selection, optimization and manufacturing of cheap magnetic beads, highly adsorbed and easily desorbed magnetic beads, specific magnetic beads, nanocomposite magnetic beads and the research of magnetic beads recovery technology will be hot application of the magnetic separation technology based on the magnetic carriers in wastewater treatment. In order to further reduce the investment and operation costs and to promote the application of engineering, it is necessary to strengthen the research and development of high field strength using inexpensive and energy-saving magnet materials, specifically through design and development of new high efficiency magnetic separators/filters, magnetic separators and superconducting magnetic separators.

Ecological Study on Aquatic Plant Communities in the Stream of Thermal Wastewater (온배수 유입하천에 형성된 수생식물군집의 생태학적 연구)

  • 길봉섭;유현경
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.139-146
    • /
    • 1999
  • The seasonal changes of the flora at three samples sites such as Sockchong, Wang-gung and Chukrim hot spring by drained thermal waters were investigated from 1997 to 1998. Monthly occurrence of plant species in February and October showed more abundantly control site than that of heavy and/or light polluted sites. This trend demonstrated similarly in terms of seasonal changes of leaf area and plant growths, both fresh and dry weight, too. Cu, Zn, Ni and Pb content including plants from Sockchong hot spring site were increased from April to September at test area than that of control, while that was decreased in October. But Zn and Pb content holding plants from Wang-gung hot spring site represented higher test site than that of control. In short impacts on aquatic plants communities by thermal wastewater of sampled area have happened in the season of low temperature, and their restorations have done in summer season.

  • PDF

Study on Thermal Dewatering of Sludge Using the Parabolic Through Collector(PTC) Solar Collector (PTC태양열 집열기를 이용한 슬러지 열탈수 연구)

  • Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.49-56
    • /
    • 2014
  • A fiat-plate or vacuum tube solar collector have been mainly used for hot water supply of house because of some being difficult to get uniform energy density, so little applied into industrial field. This study is to apply the PTC(parabolic trough collector) solar collector into industrial field such as sludge dewatering system for energy reduction. The real scale system which composed of PTC Solar Collector and Thermal Dewatering (TDW) is established. PTC solar collector is designed to produce a hot water with $80^{\circ}C$ of temperature. And size of TDW is $630{\times}630mm$. Hot water produced from PTC solar collector is supplied into heating plate of TDW, and sludge like waterworks or wastewater is dewatered. PTC solar collector with $10m^2$ of area produce energy of average 5,618 kcal. As according to results from real scale performance, solar collector takes charge 94 % of the amount that TDW consume energy which is so large part if compare with boiler. It means that PTC solar collector is useful to apply industrial field under the condition of sufficient solar radiation. And it is analyzed that TDW by PTC solar collector has an economical validity.