• Title/Summary/Keyword: Hot spots

Search Result 252, Processing Time 0.031 seconds

Floristic diversity assessment and vegetation analysis of Upper Siang district of eastern Himalaya in North East India (인도 북동부의 동히말라야 상부 Siang 지역의 식물다양성 및 식생 조사)

  • Choudhary, Ritesh Kumar;Srivastava, Ramesh Chandra;Das, Arup Kumar;Lee, Jung-Gu
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.3
    • /
    • pp.222-246
    • /
    • 2012
  • Present paper is an outcome of a four-year floristic survey work carried out in Upper Siang district of eastern Himalayan region in India which is also recognized as one of the 39 known 'Biodiversity Hot-Spots' of the world. We present here with a vegetation analysis of this area along with a checklist of 1,003 taxa belonging to 110 families, 529 genera, 994 species, 1 subspecies and 8 varieties of the angiosperms. Besides, one new species, 3 new records to India and 82 endemic species were also recorded. The diversity of herbs and shrubs were found higher than the tree species. Orchidaceae was found the most dominant family followed by Poaceae and Fabaceae. Many threatened plants have also been reported from the area. However, rapid urbanization and Jhum cultivation are imposing direct threat to the natural vegetation. We suggest some conservation measures that could help protecting this natural heritage.

Transparent Insulation and Energy Saving in a School Building (학교건물(學校建物)의 에너지절약(節約)과 투명단열재(透明斷熱材))

  • Lee, Sung
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.2 no.2
    • /
    • pp.17-25
    • /
    • 1995
  • Because of energy crisis and environment pollution, we have become more conscious of the need to conserve heat in buildings. In response to this need. new requirements have been developed for insulation and other matters relating to energy consumption. Among others, more promising is to use the energy that is all around us in the dynamic forces of nature:the wind, tides, waves, rivers, geothermal hot spots, and the sun. The problem is that we have not been forced to find the technological means to convert these natural energies into usable forms because it has been too easy simply to dig or pump our energy out of the ground. Now, the problem is not a shortage of energy itself, but a shortage of technology for converting the energy that lies aoo around us into usable forms. Energy-conversion technology is the real issue, and solar energy is one of the brightest and most promising frontiers in energy conversion. All buildings are wrapped in a skin. Generally skins protect the person in stay from rain, wind, dust, noise, cold, hot etc.. However, there are some skins that provide energy from given environment into the building. Out of aoo, transparent insulation material is one of these materials that most effectively satisfies this kind of envelope function. Since, there are no research on transparent insulation in Korea, it has been studied very actively in Europe and in America. Thus, in this thesis, we will theoratically study and analyze how the heat flows through a trans arrent insulated opaque wall of a school building in Korea. It will be an important information for the effective using guidelines of transparent insulation materials in Korea.

  • PDF

Optimum Configuration of Gutters for Glasshouses Using ANSYS and ADAMS (ANSYS/ADAMS를 이용한 유리온실 최적의 Gutter 형태 설계)

  • Kim, Jin-Soo;Ouk, Sokunthearith;Lim, Su-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • A gutter is generally a fixed beneath the edge of a roof to carry off rainwater, or a narrow trough that collects rainwater from the roof of a building to diverts it from the structure, typically into a drain. Reasonable designs reduce the mass of the gutters (~ 16.9%), make it faster and easier to assemble, and gives it consistent strength and integrity (about 10%). New gutter systems are presented according to the results of structural analyses performed by ANSYS and ADAMS/Durability Hot Spots. In addition, the CATIA program can improve the precision of the 3D system simulations. The design of a gutter system installations also needs to comply with the specific rainfall intensities and adequate overflow provisions needs to be provided to prevent water from sides of the roofs during heavy rainfall periods. The principle outcome of this work is a computational design tool that can be used to improve the gutter performance considering a variety of factors (gutter geometry, drainage and rainfall intensity). A good gutter design must satisfy many criteria, including durability, low cost, and ease of repair and cleaning.

Spatiotemporal Analysis of Retinal Waveform using Independent Component Analysis in Normal and rd/rd Mouse (독립성분분석을 이용한 정상 마우스와 rd/rd 마우스 망막파형의 시공간적 분석)

  • Ye, Jang-Hee;Kim, Tae-Seong;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • It is expected that synaptic construction and electrical characteristics In degenerate retina might be different from those In normal retina. Therefore, we analyzed the retinal waveform recorded with multielectrode array in normal and degenerate retina using principal component analysis (PCA) and Independent component analysis (ICA) and compared the results. PCA Is a well established method for retinal waveform while ICA has not tried for retinal waveform analysis. We programmed ICA toolbox for spatiotemporal analysis of retinal waveform. In normal mouse, the MEA spatial map shows a single hot spot perfectly matched with PCA-derived ON or OFF ganglion cell response. However In rd/rd mouse, the MEA spatial map shows numerous hot and cold spots whose underlying interactions and mechanisms need further Investigation for better understanding.

  • PDF

Wear Mechanisum of Carbon Bearing BOF Refreactories (전로용 MgO-C질 내화벽돌의 손상요인)

  • 김의훈;오영우;이철수;김종성;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 1986
  • It was the first time the MgO-C brick was developed for the lining materials in the hot spots in electric are furnace in 1972. MgO-C brick is high registant to thermal and structural spalling. Futhermore for the reason that carbon is hard to react with slag and MgO is high fireproof MgO-C brick shows a high corrosion registance to slag attack compared with conventional basic refractories. Owing to their excellent properties the use of MgO-C refractories are being developed widely in the field of shaped refractories and even in that of monolithic refractories. In this paper the oxidation of carbon the infiltration of slag into the brick texture and effects of additions were investigated. The results obtained were as follows : 1) The use of fused MgO-clinker and high purity carbon as raw materials increased the corosion registance and hot modulus of rupture of MgO-C brick. 2) As the oxidation reaction of the carbon proceeded the slag infiltrated into the brick texture. And then the slag components reacted with the MgO grains and formed low melting point compounds particulary CaO.MgO.$SiO_2$ and 3CaO.MgO.$2SiO_2$ that resulted in the wear of the brick. 3) It is recongnized the Al, Si, $B_3C$ effects on the oxidation registant properties of MgO-C brick by contribu-ting to the decrease of permeability according to the formation of $Al_4C_3$, SiC, $B_2O_3$ and the decrease of open pores relating to the formation of MgO.Al2O3, $SiO_2$, 3MgO.$B_2O_3$ at the decarbonized layer.

  • PDF

Root cause analysis of sticking in hydraulically actuated multi-disc friction clutch for ship propulsion (선박 추진용 유압작동식 다판 마찰클러치 고착현상 고장탐구)

  • Jeong, Sang-Hu;Kim, Jeong-Ryeol;Shin, Jae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.330-336
    • /
    • 2017
  • This study performs a root cause analysis of the sticking that occurs in the hydraulically actuated wet type multi-disc friction clutch in a ship's diesel engine propulsion system that uses rubber elastic coupling. The fishbone method was used to study the sticking through dismantling investigation of the reduction gear and clutch, investigation of the components, and onboard system tests including nondestructive testing. The friction plate sticking is caused by the slip due to friction heat resulting from the leakage of control oil through cracks in the assembled hollow shaft. The friction plate cooling oil also leaks simultaneously through the crack, and partial sticking occurs due to the hot spots in the friction plates. These are caused by insufficient amount of cooling oil due to oil leakage.

Design and Implementation of An Object-Oriented Kernel Framework Reusable for the Development of Real-Time Embedded Multitasking Kernels (실시간 내장 멀티태스킹 커널의 개발에 재사용 가능한 객체지향 커널 프레임워크의 설계 및 구현)

  • Lee, Jun-Seob;Jeon, Tae-Woong;Lee, Sung-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.173-186
    • /
    • 2000
  • Real-time embedded systems should accommodate many kinds of hardware platforms and resource management policies that vary depending on their operating environments and purposes. It is not an easy job to adapt a multitasking kernel to new system services and hardware platforms, as the kernel must strictly satisfy constraints on its size and performance. This paper describes the design and implementation of an object-oriented multitasking framework that can be reused for implementing microprocessor-based real-time embedded multitasking kernels, In this kernel framework, those parts that can vary depending on hardware platforms and system resource management policies are separated into the hot spots and encapsulated by abstract classes. Our framework thus can be effectively used to implement microprocessor-based real-time embedded kernels that demand high portability and adaptability.

  • PDF

The Properties of Beam Intensity Scanner (BInS) for Dose Verification in Intensity Modulated Radiation Therapy (방사선 세기 조절 치료에서 선량을 규명하는 데 사용된 BlnS System의 특성)

  • 박영우;박광열;박경란;권오현;이명희;이병용;지영훈;김근묵
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Patient dose verification is one of the most Important responsibilities of the physician in the treatment delivery of radiation therapy. For the task, it is necessary to use an accurate dosimeter that can verify the patient dose profile, and it is also necessary to determine the physical characteristics of beams used in intensity modulated radiation therapy (IMRT) The Beam Intensity Scanner (BInS) System is presented for the dosimetric verification of the two dimensional photon beam. The BInS has a scintillator, made of phosphor Terbium-doped Gadolinium Oxysulphide (Gd$_2$O$_2$S:Tb), to produce fluorescence from the irradiation of photon and electron beams. These fluoroscopic signals are collected and digitized by a digital video camera (DVC) and then processed by custom made software to express the relative dose profile in a 3 dimensional (3D) plot. As an application of the BInS, measurements related to IWRT are made and presented in this work. Using a static multileaf collimator (SMLC) technique, the intensity modulated beam (IMB) is delivered via a sequence of static portals made by controlled leaves. Thus, when static subfields are generated by a sequence of abutting portals, the penumbras and scattered photons of the delivered beams overlap in abutting field regions and this results in the creation of “hot spots”. Using the BInS, inter-step “hot spots” inherent in SMLC are measured and an empirical method to remove them is proposed. Another major MLC technique in IMRT, the dynamic multileaf collimator (DMLC) technique, has different characteristics from SMLC due to a different leaf operation mechanism during the irradiation of photon and electron beams. By using the BInS, the actual delivered doses by SMLC and DMLC techniques are measured and compared. Even if the planned dose to a target volume is equal in our experimental setting, the actual delivered dose by DMLC technique is measured to be larger by 14.8% than that by SMLC, and this is due to scattered photons and contaminant electrons at d$_{max}$.

  • PDF

Flow and Convective Heat Transfer Analysis Using RANS for A Wire-Wrapped Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1514-1524
    • /
    • 2006
  • This work presents the three-dimensional analysis of flow and heat transfer performed for a wire-wrapped fuel assembly of liquid metal reactor using Reynolds-averaged Wavier-Stokes analysis in conjunction with 557 model as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary conditions at inlet and outlet of the calculation domain. Three different assemblies, two 7-pin wire-spacer fuel assemblies and one bare rod bundle, apart from the pressure drop calculations for a 19-pin case, have been analyzed. Individual as well as a comparative analysis of the flow field and heat transfer have been discussed. Also, discussed is the position of hot spots observed in the wire-spacer fuel assembly. The flow field in the subchannels of a bare rod bundle and a wire-spacer fuel assembly is found to be different. A directional temperature gradient is found to exist in the subchannels of a wire-spacer fuel assembly Local Nusselt number in the subchannels of wire-spacer fuel assemblies is found to vary according to the wire-wrap position while in case of bare rod bundle, it's found to be constant.

A Defect Detection of Thin Welded Plate using an Ultrasonic Infrared Imaging (초음파 열화상 검사를 이용한 박판 용접시편의 결함 검출)

  • Cho, Jai-Wan;Chung, Chin-Man;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1060-1066
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material efficiently. In this paper a detection of the welding defect of thin SUS 304 plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (20kHz) ultrasonic transducer was used to infuse the welded thin SUS 304 plates with a short pulse of sound for 280ms. The ultrasonic source has a maximum power of 2kW. The surface temperature of the area under inspection is imaged by a thermal infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the defect tip and heated up highly, are observed. From the sequence of the thermosonic images, the location of defective or inhomogeneous regions in the welded thin SUS 304 plates can be detected easily.