• 제목/요약/키워드: Hot isostatic pressing

검색결과 87건 처리시간 0.021초

인공개재물 이식법을 통한 항공기용 티타늄 주물의 피로설계 (An Artificial Inclusion Seeding Methodology for Fatigue Design of Aerospace Ti Castings)

  • ;박용국;김진곤
    • 한국주조공학회지
    • /
    • 제26권4호
    • /
    • pp.184-190
    • /
    • 2006
  • Presence of inclusions in Ti castings imparts detrimental effects on the mechanical performance of castings. However, actual inclusions do not occur very frequently and they are difficult to locate. As a result, acquirement of specimens for mechanical tests and thus in-depth research of the adverse influence of inclusions are challenging. To address this problem, artificial inclusion seeding methodology is developed to emulate actual inclusions in Ti investment castings. Firstly, to validate that this new methodology does not result in inherent mechanical property degradation, Ti specimens with machined, backfilled and HIPed holes are produced and compared to control (unaltered), cast Ti material. Fatigue test results indicate that this 'machine-and-HIP methodology without seeding' does not result in any fundamental mechanical property alteration, which would bias ensuing comparative results. Secondly, based on this result, validation of the artificially seeded inclusions being equivalent to 'as cast' inclusions is performed by comparing their fatigue behaviors. Test specimens created by the novel artificial inclusion seeding methodology are equivalent to Ti casting specimens containing actual cast-in inclusions, and an adverse effect of inclusions in investment castings is confirmed.

기계적합금화법에 의해 제조된 NiAl 나노금속간화합물 소결체의 인성 및 제진특성 (Toughness and Damping Properties of Nanostructured Ni-Al Alloys Produced by Mechanical Alloying Methods)

  • 안인섭;김형범;김영도;김지순
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.143-148
    • /
    • 2000
  • NiAl alloy powders were prepared by mechanical alloying method and bulk specimens were produced using hot isostatic pressing techniques. This study focused on the transformation behavior and properties of Ni-Al mechanically alloyed powders and bulk alloys. Transformation behavior was investigated by differential scanning calorimeter (DSC), XRD and TEM. Particle size distribution and microstructures of mechanically alloyed powders were studied by particle size analyzer and scanning electron microscope (SEM). After 10 hours milling, XRB peak broadening appeared at the alloyed powders with compositions of Ni-36at%Al to 40at%Al. The NiAl and $Ni_3Al$ intermetallic compounds were formed after water quenching of solution treated powders and bulk samples at $1200^{\circ}C$, but the martensite phase was observed after liquid nitrogen quenching of solution treated powders. However, the formation of $Ni_3Al$ intermetallic compounds were not restricted by fast quenching into liquid nitrogen. It is considered to be caused by fast diffusion of atoms for the formation of stable $\beta$(NiAl) phase and $Ni_3Al$ due to nano sized grains during quenching. Amounts of martensite phase increased as the composition of aluminium component decreased in the Ni-Al alloy, which resulted in the increasing damping properties.

  • PDF

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향 (Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel)

  • 권대현;노상훈;이정구
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.311-317
    • /
    • 2020
  • In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.

저농축 우라늄을 사용하는 핵분열 몰리브덴-99 생산에 관련된 방사성 폐기물 연구 (Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU))

  • 머흐무드 하산;류호진
    • 방사성폐기물학회지
    • /
    • 제13권2호
    • /
    • pp.155-161
    • /
    • 2015
  • 몰리브덴-99의 붕괴에 의해 생산되는 테크네튬-99m 은 방사선 진단에 중요한 역할을 담당하고 있다. 몰리브덴-99 는 주로 우라늄-235의 핵분열에 의해 생산되고 있으며, 이를 위해 고농축 우라늄 표적 또는 저농축 우라늄 표적이 연구로에서 조사된다. 현재는 고농축 우라늄의 사용에 따른 핵확산 문제를 저감하기 위해 저농축 우라늄 표적의 사용이 권장되고 있다. 본 연구는 몰리브덴-99 생산 시설의 계획 단계에서 방사성 폐기물 관리 전략을 정의하기 위하여 저농축 우라늄의 사용이 방사성 폐기물의 흐름에 미치는 영향을 분석하였다. 저농축 우라늄 표적 사용 시 우라늄 함유 폐기물의 부피가 6배 이상 증가하기 때문에 우라늄 고밀도 표적의 사용과 고온 정수압 압축법의 활용이 제안되었다.

냉간금형용 합금공구강 분말 및 적층조형체의 미세조직 (Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies)

  • 강전연;윤재철;김호영;김병환;최중호;양상선;유지훈;김용진
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

DLP 기반 3D 프린팅으로 제조된 Al2O3 절삭공구의 기계적 물성 연구 (A Study on the Mechanical Properties of Al2O3 Cutting Tools by DLP-based 3D Printing)

  • 이현빈;이혜지;김경호;김경민;류성수;한윤수
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.508-514
    • /
    • 2019
  • In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.

선택적 레이저 용융법으로 제조된 Ti-6Al-4V 합금의 고 주기 피로 특성에 미치는 건식 전해 연마의 영향 (Effect of Dry-Electropolishing on the High Cycle Fatigue Properties of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting)

  • 양동훈;김영균;황유진;김명세;이기안
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2019
  • Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al-4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 ㎛ and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 ㎛ and 3.15 ㎛, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.

분말야금 및 주조형 니켈기 초내열합금 크리프 신뢰성의 초음파 모니터링 (Evaluation of Creep Reliability of Powder Metallurgy and Cast-type Ni-based Superalloy by Using Ultrasonic Wave)

  • 최찬양;송진헌;오세웅;김정석;권숙인;오승탁;현창용;변재원
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.215-219
    • /
    • 2012
  • An attempt was made to evaluate creep reliability of two commercial Ni-based superalloys by using ultrasonic wave. The materials include fine-grained PM alloy fabricated by mechanical alloying and subsequent hot isostatic pressing, and IN738LC cast alloy with a grain size of a few cm. Microstructural parameters (fraction of creep cavity and size of ${\gamma}^{\prime}$ precipitates) and ultrasonic parameters (velocity, attenuation) were measured to try to find relationships between them. Ultrasonic velocity decreased with creep cavity formation in PM alloy. On the other hand, no distinct changing trend of ultrasonic velocity was observed for IN738LC alloy. Ultrasonic attenuation was found to have a linear correlation with the size of ${\gamma}^{\prime}$ precipitates and was suggested as a potential parameter for monitoring creep reliability of IN738LC alloy.

분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향 (Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy)

  • 최영신;장지훈;김건희;이창우;김휘준;이동근
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.340-345
    • /
    • 2018
  • Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.