• Title/Summary/Keyword: Hot form Die

Search Result 16, Processing Time 0.024 seconds

Computer-Aided Process Planning and Die Design for Hot Forging of H-Shaped Plane Strain Components (평면변형 H-형재의 열간단조, 공정설계 및 금형설계)

  • Park, J.C.;Kim, B.M.;Kim, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 1994
  • This research describes some developments of computer-aided process planning and die design for hot forging products of H-shaped plane strain produced by the press. The system is composed of three main modules(process planning module, die design module and simulation module) which are used independently or in all. Systm capabilities include as follows: 1. In die design module, using the results of process planning module, the shape and size of bolcker and finish die in each operation are determined and the ouput id generated in graphic form for manufacturing drawing. 3. In simulation module, the flow pattern of workpiece and the load/stroke curve are approximately predicted. Design rules for process planning and die design are extracted from plasticity theories, handbooks, relevant references and empirical know-how of field experts in hot forging companies. The developed system provides poweful capabilities for process planning and die design of hot forging products.

  • PDF

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Coercivity of Hot-pressed Compacts of Nd-Fe-B-type HDDR-treated Powder

  • Abdul Matin, Md.;Kwon, Hae-Woong;Lee, Jung-Goo;Yu, Ji-Hun
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ HDDR-treated powder was compacted by hot-pressing using different configurations of dies and heating rates. The die configurations were especially different in terms of the evacuation system that was used in heating for hot-pressing. The coercivity in the compacts was influenced by the evacuation system of the die and heating rate. In spite of the identical hot-pressing temperature and heating rate, coercivity was radically reduced above $600^{\circ}C$ in the compacts prepared in the closed-type die compared to that in the compacts prepared in the open-type die. The coercivity in the compacts prepared in the closed-type die decreased with increasing heating rate and the value further increased when extreme high heating rate was employed. $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ HDDR-treated powder contained a significant amount of residual hydrogen (approx. 1500 ppm) in the form of $Nd_2Fe_{14}BH_x$ hydride. The dramatic coercivity decrease in the compact prepared in the closed die is attributed to the disproportionation of $Nd_2Fe_{14}BH_x$ hydride. High coercivity is mainly due to the effective desorption of hydrogen or the suppression of hydrogen-related disproportionation upon hot-pressing.

Process analysis and prediction of die strength of condenser tube with 12 holes in hot extrusion (12홀 컨덴서 튜브의 열간 압출 공정해석 및 금형의 강도예측)

  • Lee S. H.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.436-439
    • /
    • 2005
  • Condenser tube has been used as a component of heat exchanger in automobile and air conditioning apparatus. In this paper, porthole die extrusion that is advantageous to form long hollow section tube is analyzed by direct extrusion of condenser tube with 12 holes. A study on extrusion process is performed through the 3D FE simulation at non-steady state and extrusion experiments. Especially, weldability, extrusion load and die defects were estimated try FE-simulation. This study present the redesigned die of direct extrusion in consideration of the results obtained from FE-analysis.

  • PDF

Automated Design of Forward Extrusion Die by AutoLISP Language (AutoLISP을 이용한 전방압출 금형의 자동설계 연구)

  • 김종호;류호연;홍기곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.584-588
    • /
    • 1997
  • Lots of forginfs used in automobile and aerospce industries are made in hot or cold working conditions, depending on the size and shape of a product. Usually the die design for new items has been first made on the basis of experiences and many know-hows accumulated in the company and then slightly modified through trial and error method to get the desired forgings without defects. Most of drawings at the die design stage have been manually drawn, butrecently some of forging companies have begun to apply a computer-aided drafting technique to the die design for reducing drafting time as well as repeatedly utilizing standardized parts form registerd data base. In this paper the automated die design technique for forward extrusion of axisymmetric forgings is developed by using AutoLISP language. For this study the representative die system is determined form the investigation of several types of forging dies being currently employed in the metal forming field and the design rules for cold extrusion die are summarized and programmed on a personal computer. A few design examples of forward extrusion die are given and discusses.

  • PDF

Numerical Study on Forming Characteristics of Hot Multi-Point Forming Die (수치해석을 이용한 열간 가변금형 성형특성 평가)

  • Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.236-243
    • /
    • 2018
  • A multi-point forming die (MPFD), which has been used for producing curved plates, is capable of forming various curved plates with just one MPFD. However, in real industries, an MPFD is difficult to be adopted since the structural properties, punch strength, elastic recovery correction and dimensional accuracy become problems. In order to overcome these problems, the hot multi-point forming die (HMPFD) was proposed in this study. This HMPFD commonly provide more less spring-back and forming load than conventional MPFD. Nevertheless, this process is very difficult to form the curved plate, because the final curved shape of the plate depends on many process variables such as the punch/nozzle arrangement (height and distance), the radius of punch, contact conditions between plate and punch. In this study, the forming characteristics of HMPFD and conventional MPFD are compared with each other through the finite element analysis.

Adjustment of Roll Gap for the Dimension Accuracy of Bar in Hot Bar Rolling Process

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Youngseog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

Die design for HIP'ing of Nickel-base Superalloys (초내열합금 HIP 성형을 위한 금형설계)

  • Lim J.S.;Yeom J.T.;Hou Bongliang;Park N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.139-142
    • /
    • 2004
  • Nickel base superalloys are widely used for high temperature applications due to heat resisting capability and corrosion resistance at high temperatures. Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720 and MM 247, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations fur low temperature plasticity deformation.

  • PDF

Finite Element Simulation of Hot Forging Process for Tank Transmission Ring Component (전차 변속기 링 형상 부품의 열간 단조 공정 성형 해석)

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1327-1333
    • /
    • 2024
  • In this study, the formability was predicted using a finite element method-based forming simulation program to manufacture ring-shaped parts with multiple rectangular grooves through a hot forging process. The hot forging process was designed into four processes. In the first and second processes, the disk-shaped raw material was transformed into the shape of a bowl. In the third process, the inner lower part of the bowl was sheared to form a ring shape. In the fourth process, the outer surface of the upper part of the ring was partially sheared to create multiple rectangular grooves. Since the lower mold for the first and second processes is the same, mold costs can be reduced. In the third process, burrs are expected to occur on the shear surface, so burr removal work is required in the actual process. The fourth process requires more than one forging operation because the rectangular groove cannot be made uniformly in one operation.