• Title/Summary/Keyword: Hot filament

Search Result 106, Processing Time 0.024 seconds

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Effects of wet treatment conditions on the crystallinity and morphology of outside of silkworm cocoons

  • Kim, Yeon Jin;Kweon, HaeYong;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Natural nonwoven silk fabric has attracted researchers' attention owing to its unique properties as a biomaterial. It is fabricated by reeling, wetting, and hot pressing natural silk filament from silkworm cocoons. In this study, silkworm cocoons were immersed in water at different temperatures for various durations to examine the effects of wet treatment on their crystallinity and morphology. As the treatment temperature and time increased, the cocoon's silk filament separation became more evident, and fibroin strands were observed in it. The crystallinity indexes of the silkworm cocoons increased until a treatment time of 2 h and remained constant thereafter. The increase in the crystallinity index using wet treatment was enhanced by increasing the treatment temperature. Although the weight loss of the silkworm cocoon was insignificant until 40℃, it was appreciable above this temperature, and the degree of weight loss constantly increased with increases in the treatment temperature and time.

Electrical coating method of Functional Materials (기능성 전기코팅)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.110-111
    • /
    • 2008
  • Diamond material were manufactured using electrical pyrolysis method and hot filament method. Surface morphology was observed with SEM and its microstructure was investigated using Raman spectroscopy. The accumulation of the particles was observed to have strong selective and to deposit at the substrate only on the roughly polished steel surface compared to the mirror polished implying that the particle was a charged.

  • PDF

니켈 피복된 고속도강에의 다이아몬드 박막형성에 관한 연구

  • 유형종;최진일;최용
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.240-243
    • /
    • 2004
  • Bias인가된 Hot filament CVD방법을 이용해 Ni을 RF sputtering법으로 고속도강에 피복하여 중간층으로 한후 다이아몬드 박막을 피복할 때 기판온도. Bias인가효과 및 계면층의 특성을 조사하였다. 증착시 Bias인가 할 경우 필라멘트에서 전자방출이 촉진되어 다이아몬드 핵생성과 성장을 촉진하였으며 본 실험에서 최적조건은 증착압력 20~40 torr, Bias인가전압 200V, 기판온도 $700^{\circ}C$로 나타났으며 강에의 다이아몬드 박막 형성시 Ni은 중간층으로써 적합한 원소로 나타났다.

  • PDF

Theory of Charged Clusters Linking Nano Science and Technology to Thin Films

  • Hwang, Nong-Moon
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.20-20
    • /
    • 2002
  • Based on experimental and theoretical analyses, we suggested a new possibility that the CVD diamond films grow not by the atomic unit but by the charged clusters containing a few hundreds of carbon atoms, which form spontaneously in the gas phase [J. Crysta] Growth 62 (1996) 55]. These hypothetical negatively-charged clusters were experimentally confirmed under a typical hot-filament diamond CVD process. Thin film growth by charged clusters or gas phase colloids of a few nanometers was also confirmed in Si and ZrO₂ CVD and appears to be general in many other CVD processes. Many puzzling phenomena in the CVD process such as selective deposition and nanowire growth could be explained by the deposition behavior of charged clusters. Charged clusters were shown to generate and contribute at least partially to the film deposition by thermal evaporation. Origin of charging at the relatively low temperature was explained by the surface ionization described by Saha-Langmuir equation. The hot surface with a high work function favors positive charging of clusters while that of a low work function favors negative charging.

  • PDF

Effect of Dipsaci Radix on Pain In Complex Region Pain Syndrome (실험적으로 유발한 복합부위통증증후군 모델에서 속단이 통증에 미치는 영향)

  • Kim, Kyung-Yoon;Jeong, Hyun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.678-684
    • /
    • 2009
  • It was reported that Dipsaci Radix has decrease pain effect on the Complex Region Pain Syndrome(CRPS). the CRPS was induced by unilateral loose occlusion in 4 part of the sciatic nerve of the rats. For the fingding significantly change on CRPS rats were divided into 4 different experimental groups. and each groups were induced CRPS. Experimental group I (control group; n=15), experimental group II (100 mg/kg Dipsaci Radix dieted rats; n=15), experimental group III (300 mg/kg Dipsaci Radix dieted rats; n=15), and experimental group IV(500 mg/kg Dipsaci Radix dieted rats; n=15). The study of Dipsaci Radix concentration was that foot withdrawal threshold to the thermal stimuli(Hot plate test), foot withdrawal threshold to the mechanical stimuli(von Frey's filament) and immunohistochemistry staining that were substance P. Hot plate test and von Frey Filament were increase in experimental group II, III, IV than group I, especially group III was most significantly change than group II and IV in post-hoc(Duncan's multiple range). and In immunohistochemistry observation; group I showed increase in the group II, III, IV. especially group III had the minimal level of the substance P expression while the experimental group II, III. These results suggested that the Dipsaci Radix dieted made the decrease of pain in CRPS.

Influence of Pretreatment of Substrate on the Formation of Diamond Thin Film by Hot Filament CVD (열 필라멘트 CVD법에 의한 다이아몬드 박막합성과 기판 사전처리의 영향)

  • Im, Gyeong-Su;Wi, Myeong-Yong;Hwang, Nong-Mun
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.732-742
    • /
    • 1995
  • Effects of the substrate pretreatment on uncleation density of the diamond thin films have been investigated. The film was prepared using the hot-filament CVD reactor with the mixture of methane and hydrogen. The substrate pretreatment was done in three different ways: predeposition of carbon on the substrate, soot on the substrate, and graphite on the substrate. All three cases enhanced the nucleation density of diamond. And the effect was more marked in the first and the second cases than in the third one. In the first case where the substrate was predeposited by the carbon phase, a very smooth and uniform film of diamond could be obtained. Since the bound strength between the substrate and the predeposited carbon phase is relatively weak, separation of the diamond film layer from the substrate was found to be easy.

  • PDF

The Vertical Alignment of CNTs and Ni-tip Removal by Etching at ICPHFCVD (ICPHFCVD에 의한 탄소나노튜브의 수직 배향과 에칭을 이용한 Ni-tip의 제거)

  • 김광식;장건익;장호정;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a technique for the preparation of vertically grown CNTs by ICPHFCVD(inductively coupled plasma hot filament chemical vapor deposition) below $580^{\circ}C$. Purification of the CNTs(carbon nanotubes) using RE(radio frequency) plasma in a one step process, based on the different etching property of the Ni-tip, amorphous carbon and carbonaceous materials is also discussed. After purifying the grown materials. CNTs shown the multi walled and hollow typed structure. The typical outer and inner diameters or CNT were 50 nm and 25 nm, respectively. The graphitic wall was composed of 82 layers and the distance between wall and wall was 0.34 nm. From the results of TEM observation, the Ni catalyst at the tip of the carbon nanotubes were effectively removed by using a RF plasma etching, continuously.

  • PDF

The Safety and Analgesic Effect of Datura Flos Pharmacopuncture in Sprague-Dawley Rats

  • Jun, Seungah;Lee, Yun Kyu;Lee, Bong Hyo;Kim, Jae Soo;Lee, Hyun-Jong
    • Journal of Acupuncture Research
    • /
    • v.36 no.3
    • /
    • pp.147-153
    • /
    • 2019
  • Background: The aim of this study was to investigate the safety and analgesic effects of Datura Flos pharmacopuncture (DFP). Methods: The analgesic effects of DFP were assessed using mechanical (hot plate), chemical (formalin test), and thermal (von Frey filament test) pain tests. Forty male Sprague Dawley rats were assigned randomly into DFP (75 mg/kg, 150 mg/kg), lidocaine 0.5%, or normal saline group for treatment on Kl3. Gross pathology, histopathology, biochemistry and hematology were performed. Results: In the hot plate test, DFP at a high dose (HDDFP; 150 mg/kg) produced a significant analgesic effect, at 10 and 20-minutes post injection (p < 0.01). Low dose DFP (LDDFP; 75 mg/kg) also showed an analgesic effect at 10 minutes post injection (p < 0.01). In the formalin test, HDDFP produced an analgesic effect, for 0-10 and 10-20 minutes (p < 0.01) post treatment, whereas LDDFP showed analgesic effects between 10-20 minutes (p < 0.05). In the von Frey filament test, DF-H produced an analgesic effect, 10 (p < 0.01) and 20 minutes post treatment (p < 0.05). LDDFP showed analgesic effect at 10 minutes (p < 0.05). In the acupuncture response test, HDDFP produced an analgesic effect at 10 minutes post treatment (p < 0.05). DF-H did not cause any anatomical changes to the liver or kidney and there were no abnormalities in biochemistry or hematology. Conclusion: DF-H was not toxic and provided short term analgesia, suggesting it may be useful in the management of pain.

Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition (HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성)

  • Park, Seungil;Ji, Hyung Yong;Kim, MyeongJun;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.