• Title/Summary/Keyword: Hot box 시험

Search Result 11, Processing Time 0.03 seconds

Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test (온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로-)

  • Yun, Sung-Wook;Lee, Si-Young;Kang, Dong-Hyeon;Son, Jinkwan;Park, Min-Jung;Kim, Hee-Tae;Choi, Duk-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens ($70{\times}70cm$) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multi-layered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.

Development of Thermal Performance Tester for Non-Homogeneous Insulation Pannels Installed Vertically (수직으로 설치된 비균질 평판 단열재용 성능시험장치 개발)

  • Oh, Hong Young;Song, Ki O;Jeon, Hyun Ik;Cho, Sun Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2016
  • In case of metal insulation, which is produced by stacking stainless steel sheets and air layers in a multi-stack manner at a specific thickness, insulation performance will be evaluated based on thermal transmittance rather than the intrinsic physical properties of each material such as thermal conductivity. However, there is no standard for measuring thermal transmittance targeted for non-homogeneous insulation which is used in relatively high temperature conditions such as a power station. In this study, the thermal conductivity of homogeneous insulation acquired by the standardized guard hot plate method and the thermal conductivity of homogeneous insulation measured by the newly developed performance tester were compared to verify the confidence level of the tester. As a result, thermal conductivity acquired by the newly developed thermal transmittance tester was about 6% higher than the thermal conductivity measured by the existing guard hot plate method under the anticipated service temperature conditions.

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF

A Result Analysis on Field Test for Localization Development of Axle Counter System (Axle Counter System 국산화 개발을 위한 현장시험 결과분석)

  • Ko, Joon-Young;Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6214-6220
    • /
    • 2015
  • A track circuit has used stably more than 100 years for detecting train position, but solution of track circuit sort circuit incapacity due to a rust is necessary for side line in station yard, coast line and level crossing for conventional line in rural line. Domestically, Axle Counter System(ACS) has partially used for Hot Box System for high speed line and turnout for CBTC system. In contrast, most of countries has used ACS not only trunk line but also rural line and its application has increased for metro, electric car and industrial railway. In this paper, we has verified the operating status of ACS which installed with existing track circuit through log analsis to implement pilot application in mail track and turnout in station yard. And interface test with interlocking system has conducted at Obong shunting yard, as well as Cheongju station and has analyzed test result. Based on a test result, we made fail safe design, manufacturing skill and established system requirement specification for the smooth operation and maintenance.

Experimental Study of Cooling Fan Performance Analysis and Shroud Characteristics for an Excavator (굴삭기 냉각팬 성능해석 및 슈라우드 특성에 대한 실험적 연구)

  • Lee, Jae-Seok;Chung, Kyung-Nam;Kim, Jin-Young;Lee, Tae-Kyung;Kang, Jeong-Won;Shim, Jae-Koo;Son, Deuk-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2597-2602
    • /
    • 2007
  • In this paper, the performance analysis is experimentally carried out in order to select the best cooling fan and shroud considering both cooling performance and noise reduction. 4 cooling fans have been tested in the fan tester and the real excavator. In order to obtain the performance of the cooling fans, flow capacity has been estimated by measuring flow velocity using a hot wire anemometer, and noise radiation has been also measured to estimate the fan noise. Characteristics of a box-type and a streamlined shroud have been examined by changing the immersion depth of cooling fans. Based upon the results, the best cooling fan is selected. Finally, the criterion to select the best cooling fan has been set up.

  • PDF

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.

The Evaluation of Thermal Performance of Vacuum Glazing by Composition and the Pillar Arrangement through Test Method of Thermal Resistance (단열성 시험 방법을 통한 진공유리의 구성 및 필러 배치에 따른 열 성능 평가)

  • Cho, Soo;Kim, Seok-Hyun;Eom, Jae-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • The advanced counties effort to the supplement of the zero energy buildings for the global building energy saving. In the middle of the development of passive technology, the government has to effort to the energy saving of buildings by enhanced performance of the window thermal insulation. By the method of enhanced performance of window thermal insulation, the use of vacuum double glazing saves the energy consumption in building. This glazing has low U-value(heat transmission coefficient) than normal double glazing. The vacuum glazing enhanced thermal insulation performance by vacuum space of between the glass and glass. For this vacuum glazing, pillar maintain the space between glass and glass. But this structure cause the raising the heat transmission coefficient in pillar approaching glass. This study confirmed the U-value by the test method of thermal resistance for windows and doors. Also this study confirmed the variation of heat transmission coefficient by the structure of vacuum glazing. And this study measured the surface temperature of the vacuum glazing about pillar approaching glass and vacuum space in cool chamber and hot box. That result, this study confirmed U-value of $0.422W/m^2{\cdot}K$ of vacuum glazing. Also this study confirmed U-value of $0.300{\sim}0.422W/m^2{\cdot}K$ by various the structure of vacuum glazing. And this study confirmed the heat flow in pillar approaching glass.

Study on Development of Export Packaging for Fresh Melon (신선 멜론의 수출포장개발에 관한 연구)

  • Lee, Myung-Hoon;Jung, Jun-Jae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.83-91
    • /
    • 2009
  • It is very difficult to export the fresh agricultural products to long distance countries such as USA and EU without any damage. Fresh products exporting would overcome very severe conditions such as hot and cold weather changes, heavy vibrations with rolling and pitching during the target distribution period, therefore, the packaging needs the immobility of products in the container and the keeping its quality by packaging materials or methods under any surrounding environments, especially. The physical strength of outer box should be designated according to its own characteristics for agricultural product packaging. Packaging dimension which would be fit to standard pallet is also very important factor to reduce the distribution cost. There have been many agricultural products researches for export packaging to the USA so far. However they have never got desirable results which enough to apply it in real. The main purpose of this research is to develop optimum compressive strength and optimum dimension of corrugated fiberboard box which would be used to USA export packaging of fresh melon as well as Japan.

  • PDF

Effect of Rice Seed Disinfection of Loess-sulfur on the Suppression of Bakanae disease caused by Fusarium fujikuroi (벼 키다리병 방제에 관한 황토유황의 종자소독 효과)

  • So, Hyun-Kyu;Kim, Yong-Ki;Hong, Sung-Jun;Han, Eun-Jung;Park, Jong-Ho;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.345-355
    • /
    • 2017
  • This study was conducted to evaluate rice seed disinfection efficacy of loess-sulfur for the suppression of Bakanae disease caused by Fusarium fujikuroi. Rice seeds were treated at different concentrations of loess-sulfur, soaking time and temperature, and combination of hot-water treatment. Rice cultivar, Shindongjin harvested from Bakanae disease-infested area in 2015, was used. Loess-sulfur was treated as follows; concentration of undiluted solution, 2%, 1% and 0.5%; soaking time of 24 and 48 hours; treatment temperature of $20^{\circ}C$ and $30^{\circ}C$; hot water treatment or not. Optimal conditions of rice seed disinfection were selected soaking time of 48 hours and the suspension of 0.5% and 1% loess-sulfur by investigating seed germination and isolation frequency of Fusarium spp. on Komada agar medium in vitro, and were established 3 disinfection conditions as hot water ($60^{\circ}C$, 10 min.) + 1% loess-sulfur ($20^{\circ}C$, 48 hours), 1% loess-sulfur only ($30^{\circ}C$, 48 hours) and 1% loess-sulfur only ($20^{\circ}C$, 48 hours) through additional test in greenhouse. Above 3 conditions were verified by rice seedling box and paddy field test in the way of investigating Bakanae diseased plants (%) and healthy plants (%). Consequently, most effective rice seed disinfection conditions on Bakanae disease were combination of hot water and 1% loess-sulfur and loess-sulfur only at $30^{\circ}C$. Furthermore, treatments with these conditions showed control value of 100% were maintained from seedling to the heading stage in the field. However, treatment of 1% loess-sulfur only at $20^{\circ}C$ showed low control value of 78.2% in paddy field. Hot water only treatment turned out to be an effective disinfection method when conducted thoroughly with $60^{\circ}C$, 10 min. However, it was thought additional soaking process with loess-sulfur after hot water treatment served more high control effect against Bakanae disease when rice seeds were disinfected on a large scale. This results expected rice seed disinfection with loess-sulfur were effectively and easily usable method if farmers had only one of either hot water-disinfector or seed-disinfector. In addition, loess-sulfur is well-known to farmers, simple to manufacture method and cheap.

The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test (가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.